Parameter Estimation for a System of Beams Resting on Stone Column–Reinforced Soft Soil

2013 ◽  
Vol 13 (3) ◽  
pp. 222-233 ◽  
Author(s):  
Kousik Deb ◽  
Anirban Dhar
2020 ◽  
Vol 857 ◽  
pp. 283-291
Author(s):  
Safa Hussain Abid Awn ◽  
Jasim M. Abbas

Soft clayey soils cover wide Iraqi areas specially the regions close to rivers and the southern part of this country Heavy weight structures like: highways, dams, multiple story buildings are suffering unacceptable settlement, when constructing on soft soils. The high contamination of water in such soils decrease the effective stress and reduce bearing capacity. The need was appeared to improve such problematic soil by the use of new technique of stone column treated with different percentages of natural bentonite by a series of field tests using full scale concrete footing constructed on soft soil in addition to a laboratory model to investigate settlement with time at constant stress. The soil that used in this study is natural clayey soil, brought from a location south of Diyala governorate, from a farm area. The study includes also: The effect of stone column diameter treated with bentonite on the behavior of footing constructing on soft clayey soil, The effect of stone column length on the behavior of footing on such soils. Results of field and laboratory model tests reviled that the treated model by stone column mixed with 40% bentonite is the ideal one, which reduces the settlement by 55%. In other hand problems of uneven settlements appear when using 60% bentonite as a mix proportion. The Ideal slenderness ratio (Ds/Ls<25%). The effective depth of stone column treated with bentonite is (1/3H).


2018 ◽  
Vol 162 ◽  
pp. 01013 ◽  
Author(s):  
Shaymaa Tareq Kadhim ◽  
Ziad Bashar Fouad

Use of stone column technique to improve soft foundation soils under roadway embankments has proven to increase the bearing capacity and reduce the potential settlement. The potential contribution of stone columns to the stability of roadway embankments against general (i.e. deep-seated) failure needs to be thoroughly investigated. Therefore, a two-dimensional finite difference model implemented by FLAC/SLOPE 7.0 software, was employed in this study to assess the stability of a roadway embankment fill built on a soft soil deposit improved by stone column technique. The stability factor of safety was obtained numerically under both short-term and long-term conditions with the presence of water table. Two methods were adopted to convert the three-dimensional model into plane strain condition: column wall and equivalent improved ground methods. The effect of various parameters was studied to evaluate their influence on the factor of safety against embankment instability. For instance, the column diameter, columns’ spacing, soft soil properties for short-term and long-term conditions, and the height and friction angle of the embankment fill. The results of this study are developed in several design charts.


2014 ◽  
Vol 51 (7) ◽  
pp. 770-781 ◽  
Author(s):  
J.T. Shahu ◽  
Y.R. Reddy

Design charts for estimating long-term drained settlement of floating stone column group foundations are presented based on three-dimensional, elastoplastic, finite element analyses. In the analyses, the soft soil behavior is represented by the modified Cam-clay model while the stone column and mat are represented by the Mohr–Coulomb model. The finite element predictions are calibrated against model test results. A detailed parametric study of prototype stone column group foundations of various configurations is carried out to evaluate the relative importance of various foundation parameters on the group response. Next, finite element analyses of corresponding unit cells and single columns are performed. Reasonable correlations of load responses are found between single column and group behavior. Group and single column responses are then used to investigate Sg/S1 relationship with different foundation parameters, where Sg and S1 represent the settlement of the group and single column, respectively.


2018 ◽  
Vol 18 (6) ◽  
pp. 04018058 ◽  
Author(s):  
Sudip Basack ◽  
Firman Siahaan ◽  
Buddhima Indraratna ◽  
Cholachat Rujikiatkamjorn

2018 ◽  
Vol 239 ◽  
pp. 05015 ◽  
Author(s):  
Kwa Sally Fahmi ◽  
Mohammed Fattah ◽  
Alena Shestakova

This paper deals with using the stone column as a technique for the enhancement of the soft ground. The key goal of utilizing stone column is to decrease settlement and to increment the soil bearing ability, as well as decreasing the consolidation period. Nowadays, the current method concerns with various kinds of soil granular and cohesive. It is clear that the delicate soils (cohesive) possess a good settlement because of the disability of the ground to control the sidelong development and protruding of the stone sections. Moreover, the ways of utilization of the geosynthetic materials for encasement of the stone sections are other perfect ways to enhance the implementation, the quality, and firmness of stone segments. The present work investigates the behavior of the soft soil reinforced with ordinary and encased stone columns with geogrid under cyclic load. Six model tests were carried out on a soil with shear strength of about 15 kPa for both ordinary stone columns (OSC) and geogrid encased stone columns (ESC). For validating the enhanced method of utilizing stone columns, finite element model using the software PLAXIS 3D and field load exams had been applied. It was concluded that the models subjected to cyclic loading under the rate of loading 10 mm/sec reached the failure level faster than models tested under the rate of loading 5 mm/sec. The results of the finite element analyses of settlement compared with the records of settlement after the laboratory load tests seem to yield reasonably comparable values up to 50% of the design load. Afterwards, the recorded settlements show up to 60% higher values in compare with the results of the finite element analyses. This observation can be attributed to the occurrence of plastic failures under increasing load after an initial elastic response.


Sign in / Sign up

Export Citation Format

Share Document