Improvement of Soft Soil by Stone Column Treated with Bentonite

2020 ◽  
Vol 857 ◽  
pp. 283-291
Author(s):  
Safa Hussain Abid Awn ◽  
Jasim M. Abbas

Soft clayey soils cover wide Iraqi areas specially the regions close to rivers and the southern part of this country Heavy weight structures like: highways, dams, multiple story buildings are suffering unacceptable settlement, when constructing on soft soils. The high contamination of water in such soils decrease the effective stress and reduce bearing capacity. The need was appeared to improve such problematic soil by the use of new technique of stone column treated with different percentages of natural bentonite by a series of field tests using full scale concrete footing constructed on soft soil in addition to a laboratory model to investigate settlement with time at constant stress. The soil that used in this study is natural clayey soil, brought from a location south of Diyala governorate, from a farm area. The study includes also: The effect of stone column diameter treated with bentonite on the behavior of footing constructing on soft clayey soil, The effect of stone column length on the behavior of footing on such soils. Results of field and laboratory model tests reviled that the treated model by stone column mixed with 40% bentonite is the ideal one, which reduces the settlement by 55%. In other hand problems of uneven settlements appear when using 60% bentonite as a mix proportion. The Ideal slenderness ratio (Ds/Ls<25%). The effective depth of stone column treated with bentonite is (1/3H).

2021 ◽  
Vol 318 ◽  
pp. 01008
Author(s):  
Mahdi O. Karkush ◽  
Amer G. Jihad ◽  
Karrar A. Jawad ◽  
Mustafa S. Ali ◽  
Bilal J. Noman

The response of floating stone columns of different lengths to diameter ratio (L/D = 0, 2, 4, 6, 8, and 10) ratios exposed to earthquake excitations is well modeled in this paper. Such stone column behavior is essential in the case of lateral displacement under an earthquake through the soft clay soil. ABAQUS software was used to simulate the behavior of stone columns in soft clayey soil using an axisymmetric finite element model. The behavior of stone column material has been modeled with a Drucker-Prager model. The soft soil material was modeled by the Mohr-Coulomb failure criterion assuming an elastic-perfectly plastic behavior. The floating stone columns were subjected to the El Centro earthquake, which had a magnitude of 7.1 and a peak ground acceleration of 3.50 m/s2. The surface displacement, velocity, and acceleration in soft clayey enhanced by floating stone columns are also smaller than in natural soft clay. The findings of this research revealed that under the influence of earthquake waves, lateral displacement varies with stone columns of various lengths.


2018 ◽  
Vol 7 (2) ◽  
pp. 263
Author(s):  
Maryam Gaber ◽  
Anuar Kasa ◽  
Norinah Abdul Rahman ◽  
Jamal Alsharef

This article presents a comparative study of the behaviour of clayey soil reinforcements using stone column ground improvement by means of numerical analyses. Two-dimensional finite element analyses with commercially available software, PLAXIS, were performed on end-bearing stone columns using 15-noded triangular elements to investigate the impact of the modelling type on the stress concentration ratio and failure mechanism of an improved foundation system. Consolidation analyses were conducted throughout the study using Mohr-Coulomb’s criterion. The computed values of the stress concentration ratios were compared for different key parameters, including the diameters of stone columns, c/c spacing of columns, friction angle of stone column material, and undrained cohesion of soft soil. The major conclusions of this study were that the stone column in the unit cell model shared between 2.5 to 3.14 times more loads than the surrounding soil, whilst in the plane strain model it shared between 1.7 to 2.9 times more loads. The use of plane strain approach to model the stone column gave a more comprehensive representation of the stress distribution and load transfer between the soil and columns, in addition to being a better method than the unit cell concept to evaluate the failure mode in this system.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongquan Yuan ◽  
Minghua Zhao ◽  
Yao Xiao ◽  
Chaowei Yang

In soft soil foundations, geogrid encased stone column composite foundation technology has been widely applied and developed in recent years due to its efficient treatment. In this study, eight groups of laboratory model tests were performed in a large-scale testing tank to investigate the bearing mechanism and stress characteristics of the composite foundation of geogrid encased stone columns under traffic loads with different cyclic load ratios. The stress at the bottom of the stone column and settlement of the composite foundation were measured and analysed. The test results show that cyclic shearing will cause the rearrangement of the soil particles at the column-soil interface, which will cause changes in the face pressure and effective stress state of the column-soil boundary. The cyclic load has a substantial influence on the accumulation settlement of the composite foundation and the development of the lateral stress state of the column. Based on the test results, the development law of the cumulative settlement is summarized, and the change mechanism of the column stress state is analysed and discussed.


2018 ◽  
Vol 162 ◽  
pp. 01020 ◽  
Author(s):  
Nahla Salim ◽  
Kawther Al-Soudany ◽  
Nora Jajjawi

All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economically feasible ground improvement techniques are the important challenges being faced by the engineering community. This work focuses on improving the soft soil brought from Baghdad by utilizing the local waste material for stabilization of soil, such as by using “Nylon carry bag’s by product” with the different percentage and corresponding to 1 %, 3% and 5% (the portion of stabilizer matters to soil net weight) of dried soil. The results indicated that as Nylon’s fiber content increases, the liquid limit decreases while the plastic limit increases, so the plasticity index decreases. Furthermore, the maximum dry density decreases while, the optimum moisture content increases as the Nylon’s fiber percentage increases. The compression index (decreases as the Nylon’s fiber increases and provides a maximum of 43% reduction by adding 5% nylon waste material. In addition, the results indicated that, the undrained shear strength increases as the nylon fiber increases.


2012 ◽  
Vol 170-173 ◽  
pp. 1005-1012
Author(s):  
Lin You Pan ◽  
Xiao Bing Li ◽  
Chuang Yu ◽  
Fu Xue Sun

In view of Wenzhou saturated super soft soil, This article studied the influence of different soil parameters for the shaft excavation construction and the stratum displacement change law by using Plaxis finite element software, according to the data obtained in field tests. The considered factors included the lateral brace stiffness, the stiffness of the underground diaphragm wall, and the surrounding soil disturbance. The calculation results provided much important engineering information, such as the horizontal displacement nephogram, the vertical displacement nephogram and the total displacement incremental vector diagram of each construction steps, which can be referred for the construction of the similar underground projects in soft soil areas.


2021 ◽  
Vol 1046 ◽  
pp. 83-88
Author(s):  
Leonardo Marchiori ◽  
André Studart ◽  
António Albuquerque ◽  
Victor Cavaleiro ◽  
Abílio P. Silva

A water treatment sludge (WTS) was characterized in order to evaluate if its properties would be suitable for use as liner of earthworks or for strengthening a clay soil. A WTS and a clayey soil was characterized in terms of granulometry, cumulative volumes, specific surface, density, plastic limit, liquid limit, water content, hydraulic conductivity, and characteristics of compaction (optimal water content and dry density). This study aimed to exhibit and evaluate these investigated parameters of WTS, soft soil and mixed proportions between the materials for liners’ material production while evaluating soft soils’ reinforcement feasibility. The results have shown WTS’s contribution with its fine granulometry and compaction characteristics, indicating filling properties and possible feasibility as soft soils additions for liners’ material production while being applicable for soils‘ reinforcements, corroborating with existing literature on the subject. Thus, the currently developed investigation has exposed WTS as a potential addition for these applications while also attending society’s new demands towards a more sustainable future.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Zhongyu Liu ◽  
Penglu Cui ◽  
Jiachao Zhang ◽  
Yangyang Xia

To further investigate the rheological consolidation mechanism of soft soil ground with vertical drains, the fractional-derivative Merchant model (FDMM) is introduced to describe the viscoelastic behavior of saturated clay around the vertical drains, and the flow model with the non-Newtonian index is employed to describe the non-Darcian flow in the process of rheological consolidation. Accordingly, the governing partial differential equation of the ideal sand-drained ground with coupled radial-vertical flow is obtained under the assumption that the vertical strains develop freely. Then, the numerical solution to the consolidation system is conducted using the implicit finite difference method. The validity of this method is verified by comparing the results of Barron’s consolidation theory. Furthermore, the effects of the parameters of non-Darcian flow and FDMM on the rheological consolidation of ground with vertical drains are illustrated and discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yousheng Deng ◽  
Zhihe Cheng ◽  
Mengzhen Cai ◽  
Yani Sun ◽  
Chengpu Peng

Bamboo is highly renewable and biodegradable with good short-term strength, which meets the requirement for temporal support structures in shallow foundation pits. Based on this, we conducted a laboratory model test on the dentate bamboo micropile support structure combined with environmentally friendly building materials and new type of piles, to explore the stress characteristics, stress change regularity, and the support effect of the system in soft soil foundation pits. The results show that the earth pressure on the pile sides above the excavation surface gradually decreases with an increase in the excavation depth. The bending deformation of the bamboo pile was also significant. The results also show that the earth pressure and the pile strain below the excavation surface change slightly during the excavation process. When the short sides of the foundation pit were loaded, the highest strain was recorded in the piles 4 and 11. A maximum strain of 358.93 με was recorded, and the maximum displacement of the pile in the top part was obtained to be only 2.14 mm. The most subsidence of dentate pile obtained is only 1.88 mm, whereas that of the single-row pile is 2.35 mm. Compared to the traditional single-row pile, the dentate piles can effectively reduce the horizontal deformation as well as the surface subsidence effectively. They can also support more external lateral load, and hence maintain the foundation stability and give better support. The results provide a theoretical basis for ecological bamboo support technology and have great value to be promoted.


Sign in / Sign up

Export Citation Format

Share Document