Optimum design of stone column-improved soft soil using multiobjective optimization technique

2011 ◽  
Vol 38 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Kousik Deb ◽  
Anirban Dhar
2021 ◽  
Vol 13 (6) ◽  
pp. 3308
Author(s):  
Chandrasekaran Venkatesan ◽  
Raju Kannadasan ◽  
Mohammed H. Alsharif ◽  
Mun-Kyeom Kim ◽  
Jamel Nebhen

Distributed generation (DG) and capacitor bank (CB) allocation in distribution systems (DS) has the potential to enhance the overall system performance of radial distribution systems (RDS) using a multiobjective optimization technique. The benefits of CB and DG injection in the RDS greatly depend on selecting a suitable number of CBs/DGs and their volume along with the finest location. This work proposes applying a hybrid enhanced grey wolf optimizer and particle swarm optimization (EGWO-PSO) algorithm for optimal placement and sizing of DGs and CBs. EGWO is a metaheuristic optimization technique stimulated by grey wolves. On the other hand, PSO is a swarm-based metaheuristic optimization algorithm that finds the optimal solution to a problem through the movement of the particles. The advantages of both techniques are utilized to acquire mutual benefits, i.e., the exploration ability of the EGWO and the exploitation ability of the PSO. The proposed hybrid method has a high convergence speed and is not trapped in local optimal. Using this hybrid method, technical, economic, and environmental advantages are enhanced using multiobjective functions (MOF) such as minimizing active power losses, voltage deviation index (VDI), the total cost of electrical energy, and total emissions from generation sources and enhancing the voltage stability index (VSI). Six different operational cases are considered and carried out on two standard distribution systems, namely, IEEE 33- and 69-bus RDSs, to demonstrate the proposed scheme’s effectiveness extensively. The simulated results are compared with existing optimization algorithms. From the obtained results, it is observed that the proposed EGWO-PSO gives distinguished enhancements in multiobjective optimization of different conflicting objective functions and high-level performance with global optimal values.


1999 ◽  
Vol 122 (1) ◽  
pp. 280-287 ◽  
Author(s):  
Hiromu Hashimoto ◽  
Yasuhisa Hattori

The aim of this paper is to develop a general methodology for the optimum design of magnetic head sliders in improving the spacing characteristics between a slider and disk surface under static and dynamic operating conditions of hard disk drives and to present an application of the methodology to the IBM 3380-type slider design. To generate the optimal design variables, the objective function is defined as the weighted sum of the minimum spacing, the maximum difference in the spacing due to variation of the radial location of the head, and the maximum amplitude ratio of the slider motion. Slider rail width, taper length, taper angle, suspension position, and preload are selected as the design variables. Before the optimization of the head, the effects of these five design variables on the objective function are examined by a parametric study, and then the optimum design variables are determined by applying the hybrid optimization technique, combining the direct search method and successive quadratic programming. From the obtained results, the effectiveness of optimum design on the spacing characteristics of magnetic heads is clarified. [S0742-4787(00)03701-2]


Author(s):  
Tse guan Tan ◽  
Jason Teo ◽  
On Chin Kim

AbstrakKini, semakin ramai penyelidik telah menunjukkan minat mengkaji permainan Kecerdasan Buatan (KB).Permainan seumpama ini menyediakan tapak uji yang sangat berguna dan baik untuk mengkaji asasdan teknik-teknik KB. Teknik KB, seperti pembelajaran, pencarian dan perencanaan digunakan untukmenghasilkan agen maya yang mampu berfikir dan bertindak sewajarnya dalam persekitaran permainanyang kompleks dan dinamik. Dalam kajian ini, satu set pengawal permainan autonomi untuk pasukan hantudalam permainan Ms. Pac-man yang dicipta dengan menggunakan penghibridan Evolusi PengoptimumanMultiobjektif (EPM) dan ko-evolusi persaingan untuk menyelesaikan masalah pengoptimuman dua objektifiaitu meminimumkan mata dalam permainan dan bilangan neuron tersembunyi di dalam rangkaianneural buatan secara serentak. Arkib Pareto Evolusi Strategi (APES) digunakan, teknik pengoptimumanmultiobjektif ini telah dibuktikan secara saintifik antara yang efektif di dalam pelbagai aplikasi. Secarakeseluruhannya, keputusan eksperimen menunjukkan bahawa teknik pengoptimuman multiobjektif bolehmendapat manfaat daripada aplikasi ko-evolusi persaingan Abstract Recently, researchers have shown an increased interest in game Artificial Intelligence (AI). Gamesprovide a very useful and excellent testbed for fundamental AI research. The AI techniques, such aslearning, searching and planning are applied to generate the virtual creatures that are able to think andact appropriately in the complex and dynamic game environments. In this study, a set of autonomousgame controllers for the ghost team in the Ms. Pac-man game are created by using the hybridizationof Evolutionary Multiobjective Optimization (EMO) and competitive coevolution to solve the bi-objectiveoptimization problem of minimizing the game's score by eating Ms. Pac-man agent and the number ofhidden neurons in neural network simultaneously. The Pareto Archived Evolution Strategy (PAES) is usedthat has been proved to be an effective and efficient multiobjective optimization technique in variousapplications. Overall, the results show that multiobjective optimizer can benefit from the application ofcompetitive coevolutionary


2020 ◽  
Vol 857 ◽  
pp. 283-291
Author(s):  
Safa Hussain Abid Awn ◽  
Jasim M. Abbas

Soft clayey soils cover wide Iraqi areas specially the regions close to rivers and the southern part of this country Heavy weight structures like: highways, dams, multiple story buildings are suffering unacceptable settlement, when constructing on soft soils. The high contamination of water in such soils decrease the effective stress and reduce bearing capacity. The need was appeared to improve such problematic soil by the use of new technique of stone column treated with different percentages of natural bentonite by a series of field tests using full scale concrete footing constructed on soft soil in addition to a laboratory model to investigate settlement with time at constant stress. The soil that used in this study is natural clayey soil, brought from a location south of Diyala governorate, from a farm area. The study includes also: The effect of stone column diameter treated with bentonite on the behavior of footing constructing on soft clayey soil, The effect of stone column length on the behavior of footing on such soils. Results of field and laboratory model tests reviled that the treated model by stone column mixed with 40% bentonite is the ideal one, which reduces the settlement by 55%. In other hand problems of uneven settlements appear when using 60% bentonite as a mix proportion. The Ideal slenderness ratio (Ds/Ls<25%). The effective depth of stone column treated with bentonite is (1/3H).


Sign in / Sign up

Export Citation Format

Share Document