Diurnal Dynamics in a Small Shallow Lake under Spatially Nonuniform Wind and Weak Stratification

2016 ◽  
Vol 142 (11) ◽  
pp. 04016047 ◽  
Author(s):  
Nobuaki Kimura ◽  
Chin H. Wu ◽  
John A. Hoopes ◽  
Akira Tai
Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 128 ◽  
Author(s):  
Péter Torma ◽  
Chin Wu

In this paper, the effects of littoral submerged macrophytes on weak stratification conditions in a small and shallow lake are investigated. Diverse submerged macrophytes occupying a large portion of the littoral zone act as resistance to water motions and affect lake hydrodynamics. Strong solar radiation and mild wind forcing typically occurring during the summer season result in weak stratification characterized by a diurnal cycle with a temperature differential of 1–3 °C. Temperature and circulation dynamics of a small and shallow lake are depicted by extensive field measurements and a three-dimensional non-hydrostatic model with a generic length scale (GLS) approach for the turbulence closure and drag forces induced by macrophytes. Results show that the effects of macrophytes on velocity profiles are apparent. In the pelagic area, the circulation patterns with and without macrophytes are similar. The velocity profile is generally characterized by a two-layer structure with the maximum velocity at both the water surface and the mid-depth. In contrast, inside the littoral zone, the mean flow is retarded by macrophytes and the velocity profile is changed to only one maximum velocity at the surface with a steeper decrease until 2.0 m depth and another slight decrease to the lake bottom. From the whole lake perspective, littoral macrophytes dampen the horizontal water temperature difference between the upwind side and download side of the lake. Macrophytes promote a stronger temperature stratification by retarding mean flows and reducing vertical mixing. Overall, this study shows that the temperature structures and circulation patterns under weak stratification conditions in a small and shallow lake are strongly affected by littoral vegetation.


2019 ◽  
Vol 1 (4) ◽  
pp. 21-26 ◽  
Author(s):  
O. V. Bobko ◽  
O. V. Tikhomirova ◽  
N. N. Zybina ◽  
O. A. Klitsenko

The objective of the study is to show significance of desynchronosis laboratory markers in risk assessment of metabolic syndrome (MS) development. Materials and Methods. There were examined 98 men, aged 43-88, diagnosed with dyscirculatory encephalopathy showing one and more risk factors for development of cardiovascular diseases. They were divided into 2 groups according to the international guidelines of 2009: with MS (n = 61) and without MS (n = 37). Parameters of fats, glucose metabolism, inflammatory mediators, fat tissue metabolism markers, melatonin metabolite excretion (6-sulfatoxymelatonin) were defined in blood serum and urine. Results. The article presents data on changes in leptin, adiponectin, PAI-1, testosterone production and 6-sulfatoxymela-tonin excretion in patients with MS. There are calculated threshold values of these markers definitely increasing MS risk and logistic regression equation which allows assessing MS risk for an individual patient. Conclusion. Detected disorders of melatonin synthesis diurnal dynamics in patients with MS and interconnection between melatonin production and adiponectin, leptin, PAI-1, testosterone synthesis allow considering these parameters as desynchronosis markers significant for MS development.


1988 ◽  
Vol 20 (6-7) ◽  
pp. 263-270 ◽  
Author(s):  
K. Otsubo ◽  
K. Muraoka

The dispersion and resuspension of sediments in Takahamairi Bay basin of Lake Kasumigaura were studied by means of field research and numerical simulation. The field data on wind direction and velocity, lake current, water wave, and turbidity were shown. Based on these results, we discuss how precipitated sediments were resuspended in this shallow lake. To predict the turbidity and the depth of bed erosion, a simulation model was established for this lake. The calculated turbidity showed good agreement with the field data. According to the simulated results, the turbidity reaches 200 ppm, and the bed is eroded several millimeters deep when the wind velocity exceeds 12 m/s in the lake.


2006 ◽  
Vol 29 (4) ◽  
pp. 2051-2055 ◽  
Author(s):  
G. Kiss ◽  
Gy. Dévai ◽  
B. Tóthmérész ◽  
A. Szabó

2021 ◽  
Author(s):  
Michael W. Thayne ◽  
Benjamin M. Kraemer ◽  
Jorrit P. Mesman ◽  
Bastiaan W. Ibelings ◽  
Rita Adrian

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 127
Author(s):  
Erik Jeppesen ◽  
Joachim Audet ◽  
Thomas A. Davidson ◽  
Érika M. Neif ◽  
Yu Cao ◽  
...  

Global changes (e.g., warming and population growth) affect nutrient loadings and temperatures, but global warming also results in more frequent extreme events, such as heat waves. Using data from the world’s longest-running shallow lake experimental mesocosm facility, we studied the effects of different levels of nutrient loadings combined with varying temperatures, which also included a simulated 1-month summer heat wave (HW), on nutrient and oxygen concentrations, gross ecosystem primary production (GPP), ecosystem respiration (ER), net ecosystem production (NEP) and bacterioplankton production (BACPR). The mesocosms had two nutrient levels (high (HN) and low (LN)) combined with three different temperatures according to the IPCC 2007 warming scenarios (unheated, A2 and A2 + 50%) that were applied for 11 years prior to the present experiment. The simulated HW consisted of 5 °C extra temperature increases only in the A2 and A2 + 50% treatments applied from 1 July to 1 August 2014. Linear mixed effect modeling revealed a strong effect of nutrient treatment on the concentration of chlorophyll a (Chl-a), on various forms of phosphorus and nitrogen as well as on oxygen concentration and oxygen percentage (24 h means). Applying the full dataset, we also found a significant positive effect of nutrient loading on GPP, ER, NEP and BACPR, and of temperature on ER and BACPR. The HW had a significant positive effect on GPP and ER. When dividing the data into LN and HN, temperature also had a significant positive effect on Chl-a in LN and on orthophosphate in HN. Linear mixed models revealed differential effects of nutrients, Chl-a and macrophyte abundance (PVI) on the metabolism variables, with PVI being particularly important in the LN mesocosms. All metabolism variables also responded strongly to a cooling-low irradiance event in the middle of the HW, resulting in a severe drop in oxygen concentrations, not least in the HN heated mesocosms. Our results demonstrate strong effects of nutrients as well as an overall rapid response in oxygen metabolism and BACPR to changes in temperature, including HWs, making them sensitive ecosystem indicators of climate warming.


Sign in / Sign up

Export Citation Format

Share Document