Numerical Method for Predicting Young’s Modulus of Concrete with Aggregate Shape Effect

2011 ◽  
Vol 23 (12) ◽  
pp. 1609-1615 ◽  
Author(s):  
Jianjun Zheng ◽  
Xinzhu Zhou ◽  
Zhimin Wu ◽  
Xianyu Jin
2010 ◽  
Vol 97-101 ◽  
pp. 638-641
Author(s):  
Xin Zhu Zhou ◽  
Jian Jun Zheng

This paper presents a numerical method that can predict the Young’s modulus of ceramic with reasonable accuracy. By introducing periodic conditions, the distribution of pores in the matrix phase is simulated. The lattice model is then employed for the analysis of stress in the pore structure and for the determination of the maximum element length. Finally, the validity of the proposed numerical method is preliminarily verified with the experimental results obtained from the literature.


2010 ◽  
Vol 44-47 ◽  
pp. 2307-2311
Author(s):  
Rui Hu ◽  
Zuo Min Liu ◽  
Chun Xia Xu

The effects of Young’s modulus of materials on the rolling resistance characteristics of ball bearing have been investigated by experimental,analytical and numerical method. Results show that the Young’s modulus of ball bearing greatly affects its rolling resistance characteristics and the characteristic values of the rolling resistance characteristics will decrease with the increase of the Young’s modulus of ball bearing, for example, the elastic power consumption of the ZrO2 bearing is about 80 percent of the GCr15 bearing, and that the effects mainly reflects on three aspects: the elastic hysteresis of the material, the contact stress and deformation in the contact region.Results are helpful to the design of materials compatibility of ball bearing.


2012 ◽  
Vol 31 ◽  
pp. 151-156 ◽  
Author(s):  
Jian-Jun Zheng ◽  
Xin-Zhu Zhou ◽  
Yu-Fei Wu ◽  
Xian-Yu Jin

2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


1981 ◽  
Vol 6 ◽  
Author(s):  
J.R. Mclaren ◽  
R.W. Davidge ◽  
I. Titchell ◽  
K. Sincock ◽  
A. Bromley

ABSTRACTHeating to temperatures up to 500°C, gives a reduction in Young's modulus and increase in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anisotropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined.


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


Sign in / Sign up

Export Citation Format

Share Document