Impact of Antistrip Additives on the Long-Term Aging Rheological Properties of Asphalt Binders

Author(s):  
Mena I. Souliman ◽  
Elie Y. Hajj ◽  
Peter E. Sebaaly
2016 ◽  
Vol 28 (5) ◽  
pp. 04015190 ◽  
Author(s):  
Readul Mohammad Islam ◽  
William “Bill” King ◽  
Nazimuddin M. Wasiuddin

2009 ◽  
Vol 37 (4) ◽  
pp. 101706 ◽  
Author(s):  
M. R. Mitchell ◽  
R. E. Link ◽  
Feipeng Xiao ◽  
Serji N. Amirkhanian ◽  
Junan Shen

2013 ◽  
Vol 40 (9) ◽  
pp. 861-868 ◽  
Author(s):  
Feipeng Xiao ◽  
V.S. Punith ◽  
Serji N. Amirkhanian ◽  
Bradley J. Putman

Warm asphalt has been gaining increasing popularity in recent years around the world due to many reasons including the energy reductions and environmental benefits. In the present study, the objective was to conduct a laboratory investigation of rheological properties of eight binders with four non-foaming warm mix asphalt (WMA) additives at intermediate and low performance temperatures in terms of Superpave low temperature test criteria. The conventional testing procedures such as dynamic shear rheometer (DSR), bending beam rheometer (BBR) test as well as specific Fourier transform infrared spectroscopy (FTIR) were performed to determine the influences of non-foaming additives on asphalt binders after a long-term aging procedure. The test results indicated that the binder type and source play key roles in determining the G*sin δ values of WMA binders with the non-foaming WMA additive. All eight binders containing Sasobit generally have higher creep stiffness values compared to the binders with other WMA additives. The FTIR tests illustrated that the absorbance of the C-O stretch and C-H bend regions of the WMA binders after a short and long-term aging procedure can be considered similar. Moreover, the WMA binders generally exhibit better performance properties than control binders at intermediate and low temperatures after a long-term aging procedure. Furthermore, FTIR analysis results indicate that the binder type and source play important roles in determining the rheological properties of WMA binders.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1877
Author(s):  
Kai-Hung Yang ◽  
Gabriella Lindberg ◽  
Bram Soliman ◽  
Khoon Lim ◽  
Tim Woodfield ◽  
...  

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320–500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320–500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400–500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2585
Author(s):  
Zhelun Li ◽  
Xin Yu ◽  
Yangshi Liang ◽  
Shaopeng Wu

Effective thermal conduction modification in asphalt binders is beneficial to reducing pavement surface temperature and relieving the urban heat island (UHI) effect in the utilization of solar harvesting and snow melting pavements. This study investigated the performance of two nanometer-sized modifiers, graphene (Gr) and carbon nanotubes (CNTs), on enhancing the thermal, physical and rheological properties of asphalt binders. Measurements depending on a transient plant source method proved that both Gr and CNTs linearly increased the thermal conductivity and thermal diffusivity of asphalt binders, and while 5% Gr by volume of matrix asphalt contributed to 300% increments, 5% CNTs increased the two parameters of asphalt binders by nearly 72% at 20 °C. Meanwhile, a series of empirical and rheological properties experiments were conducted. The results demonstrated the temperature susceptibility reduction and high-temperature properties promotion of asphalt binders by adding Gr or CNTs. The variation trends in the anti-cracking properties of asphalt binders modified by Gr and CNTs with the modifier content differed at low temperatures, which may be due to the unique nature of Gr. In conclusion, Gr, whose optimal content is 3% by volume of matrix asphalt, provides superior application potential for solar harvesting and snow melting pavements in comparison to CNTs due to its comprehensive contributions to thermal properties, construction feasibility, high-temperature performance and low-temperature performance of asphalt binders.


2021 ◽  
Vol 304 ◽  
pp. 124687
Author(s):  
Yanlong Liang ◽  
John T. Harvey ◽  
David Jones ◽  
Rongzong Wu

Sign in / Sign up

Export Citation Format

Share Document