Use of Waste Gypsum, Reclaimed Asphalt Filler, and GGBS as a Full Replacement of Cement in Road Base

2021 ◽  
Vol 33 (6) ◽  
pp. 04021115
Author(s):  
Kande Bure Bai Kamara ◽  
Eshmaiel Ganjian ◽  
Morteza Khorami
2012 ◽  
Vol 626 ◽  
pp. 34-38
Author(s):  
Ary Setyawan ◽  
Anastasia Muda ◽  
Sholihin As’ad

Road rehabilitation and reconstruction generate large supplies of reclaimed asphalt pavement (RAP). One of the efforts to reuse the RAP is by insitu process and utilize it as road base materials. To get satisfying result from the RAP, it is necessary to add a certain amount of Ordinary Portland Cement (OPC) as stabilizer. This study investigate the potential use of OPC-stabilized RAP in road bases. Laboratory experimental method was applied by using material collected from road located at Boyolali-Kartasura as the object of the study with the cement content variations of 4%, 5% and 6% for unconfined compressive strength test (UCS) and the cement contents variation of 5% and 6% for drying shrinkage test. The range of cement contents required for unconfined compressive strength of cement treated recycling base (CTRB) are 5% to 6%. The cement content used at Boyolali - Kartosuro road rehabilitation was 5.5%. Drying shrinkage during 28 days is 805.3 micro strain for the cement content of 5% and 826.3 micro strain for the cement content of 6%. The drying shrinkage of the materials was quite high for CTRB, so that carefully design and attention need to take into account to avoid the cracks at the road base and the prospective of reflective cracking at the surface course of the road.


◽  
2019 ◽  
Author(s):  
Kande Bure Bai Kamara ◽  
◽  
Eshmaiel Ganjian ◽  
Morteza Khorami ◽  
◽  
...  

Author(s):  
Thanon Bualuang ◽  
Peerapong Jitsangiam ◽  
Teewara Suwan ◽  
Ubonlluk Rattanasak ◽  
Napat Jakrawatana ◽  
...  

2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Mohammad Ashiqur Rahman ◽  
Rouzbeh Ghabchi ◽  
Musharraf Zaman ◽  
Syed Ashik Ali

AbstractDespite significant economic and environmental benefits, performance of warm mix asphalt (WMA) containing reclaimed asphalt pavement (RAP) remains a matter of concern. Among the current WMA technologies, the plant foaming technique (called “foamed WMA” in this study) has gained the most attention, since it eliminates the need for chemical additives. In the present study, the laboratory performance, namely rutting and moisture-induced damage potential of foamed WMA containing RAP were evaluated and compared with those of similar hot mix asphalt (HMA) containing identical amount of RAP. Dynamic modulus, Hamburg wheel tracking (HWT) and flow number tests were performed to assess the rutting resistance of the mixes. Also, stripping inflection point from HWT tests and tensile strength ratio after AASHTO T 283 and moisture induced sensitivity test (MIST) conditioning were used to evaluate the moisture-induced damage of asphalt mixes. It was found that MIST conditioning effectively simulates the moisture-induced damage and can capture the propensity of asphalt mixes to moisture damage more distinctly compared to AASHTO T 283 method due to application of cyclic loadings. The foamed WMA was found to exhibit higher rutting and moisture-induced damage potential due to lower mixing and compaction temperatures compared to HMA. However, the increase in RAP content was found to reduce rutting and moisture-induced damage potential for WMA. Therefore, the lower stiffness of foamed WMA may be compensated with the addition of stiffer binder from RAP.


Sign in / Sign up

Export Citation Format

Share Document