Improvement of Mechanical Behavior of Rubber–Cement Mortars by Catalytic Hydration

2021 ◽  
Vol 33 (10) ◽  
pp. 04021282
Author(s):  
J. H. Díaz-Aguilera ◽  
S. L. Rodríguez-Reyna ◽  
L. M. Flores-Vélez ◽  
O. Domínguez
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 517
Author(s):  
Pengfei Li ◽  
Wei Lu ◽  
Xuehui An ◽  
Li Zhou ◽  
Sanlin Du

In this study, an analysis of the influence of polymer modification on the mechanical behavior, porosity, and microstructure of mortar is carried out. Epoxy latexes contents of 5%, 10%, 15%, and 20% of cement were employed in the preparation of cement mortars based on the same workability. The specimens were subjected to dry, wet, and wet–dry curing regimes. Compressive strength, flexural strength, Mercury intrusion porosimetry (MIP), and scanning electronic microscope (SEM) tests were conducted to analyze the effect of epoxy latexes on the mechanical property and porosity of modified mortars. Based on the compressive strength test results, a quantitative method was established to calculated the degree of hydration and polymerization. The results show that the mechanical behavior and porosity property of epoxy latexes modified mortar are influenced by the degree of hydration, the degree of polymerization, and the volume changing effect of mortar. The polymerization of epoxy latexes could improve the flexural strength of the mortar. The macropores of specimens tended to decrease with the increase of the degree of epoxy latexes polymerization and cement hydration. In practical engineering, it is necessary to ensure the degree of hydration and increase the polymerization rate. Thus, the wet–dry curing regime is recommended.


1964 ◽  
Vol 37 (3) ◽  
pp. 758-769 ◽  
Author(s):  
Y. Ōhama ◽  
H. Ibe ◽  
H. Mine ◽  
K. Kato

Abstract Recently, the practical research and development of SB latex for a cement modifier have taken place and the cement mortars so modified are used in the field of building or civil engineering. The physical and chemical properties of SB latex-modified mortars have already been reported, but the effects of various polymerization conditions for latex synthesis on properties of SB latex-modified mortars have hardly been noticed. The authors discuss the effects of polymerization conditions, in particular, styrene/butadiene monomer ratio on physical properties of SB latex-modified mortar and conclude that the physical properties such as strength, drying shrinkage, adhesion, abrasion and shock resistance, etc., of SB latex-modified mortars are affected more intensely by the variation of bound styrene contents than by the rubber-cement ratios.


2013 ◽  
Vol 658 ◽  
pp. 85-88
Author(s):  
Xing Ping Li ◽  
Da Huang ◽  
Xiang He ◽  
Hui Li Lin ◽  
Kai Sun ◽  
...  

The physical properties and mechanical behavior of cement mortars containing waste tire rubber particles (WTRP) were studied. Several mortar mixtures were prepared by replacing quartz sand with 100% of WTRP and by using cement content of 150, 200, 250, 300, 350 and 400 kg/m3 respectively. Results indicated that dry bulk densities of the mortars containing WTRP were all less than 1000 kg/m3. The mortars had a certain hydrophobic property. The 28 d compressive strengths of the mortars were 0.59~2.29 MPa and the thermal conductivity values were 0.096~0.152 W/(m.K) increased with the cement content increasing. So, the mortars containing WTRP can be used as thermal insulating material.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


Sign in / Sign up

Export Citation Format

Share Document