Strengthening Research in the Longitudinal Frames of Prefabricated Structures with Viscous Dampers

2013 ◽  
Vol 671-674 ◽  
pp. 782-785
Author(s):  
Bin He ◽  
Jin Lai Pang ◽  
Cheng Qing Liu

For the lack of research in the longitudinal frame of prefabricated structure for its weak lateral stiffness, pushover analysis is conducted to evaluate the seismic performance of a fabricated concrete frame. Based on case study, the strengthening strategies with viscous dampers are analyzed. In view of the undesirable drift distribution and failure mode in the existing building, it is believed that arrangement of dampers should be designed to attain a uniform drift distribution. Based on the nonlinear time history analysis method, the strategy of damper allocation in vertical direction of the structure is investigated .Results indicate that a proper design might be attained based on the property of existing system, leading to a uniform drift distribution and better seismic performance.

2021 ◽  
pp. 875529302110478
Author(s):  
Payal Gwalani ◽  
Yogendra Singh ◽  
Humberto Varum

The existing practice to estimate seismic performance of a regular building is to carry out nonlinear time history analysis using two-dimensional models subjected to unidirectional excitations, even though the multiple components of ground motion can affect the seismic response, significantly. During seismic shaking, columns are invariably subjected to bending in two orthogonal vertical planes, which leads to a complex interaction of axial force with the biaxial bending moments. This article compares the seismic performance of regular and symmetric RC moment frame buildings for unidirectional and bidirectional ground motions. The buildings are designed and detailed according to the Indian codes, which are at par with the other modern seismic codes. A fiber-hinge model, duly calibrated with the biaxial experimental results, is utilized to simulate the inelastic behavior of columns under bidirectional bending. A comparison of the estimated seismic collapse capacity is presented, illustrating the importance of considering the bidirectional effects. The results from fragility analysis indicate that the failure probabilities of buildings under the bidirectional excitation are significantly higher as compared to those obtained under the unidirectional excitation.


2021 ◽  
Vol 6 (2) ◽  
pp. 98
Author(s):  
Ilham Ilham

ABSTRAKPenggunaan bresing tahan tekuk dapat menjadi solusi atas kebutuhan struktur tahan gempa di Indonesia. Disipasi energi pada elemen bresing tahan tekuk dilakukan melalui kinerja plastifikasi bagian inti bresing akibat beban tarik dan tekan. Penelitian ini berisi kajian kinerja dari bangunan rangka baja beraturan dengan bresing tahan tekuk (BRB) dengan variasi level ketinggian lantai yaitu 3 lantai, 8 lantai dan 15 lantai. Analisis struktur 3D dilakukan dengan dua prosedur analisis yaitu modal pushover dan nonlinear time history pada program ETABS. Hasil analisis menunjukkan bahwa pemilihan elemen BRB sangat mempengaruhi kinerja struktur, yang terlihat dari pola drift yang terjadi. Untuk struktur beraturan dengan berbagai ketinggian, tingkat kinerja struktur dengan BRB cukup baik, yaitu Immediate Occupancy (IO) akibat beban gempa rencana. Plastifikasi hanya terjadi pada BRB, dan kelelehan pada balok mulai terbentuk sampai mekanisme keruntuhan terjadi. Hasil modal pushover dengan nonlinear time history pada bangunan 15 lantai yang cukup mirip menunjukkan bahwa modal pushover dapat digunakan untuk memprediksi kinerja struktur BRB yang beraturan.Kata kunci: kinerja struktur, bresing tahan tekuk, immediate occupancy, modal pushover, nonlinear time history ABSTRACTBuckling restrained braces (BRB) can be an alternative solution for earthquake resistant steel structure in Indonesia. The energy dissipation for buckling restrained elements is conducted through yielding of the core due to tension or compression forces. This study presents an evaluation of the structural performance of steel structures with BRB varying in heights, 3-story, 8-story and 15-story. The 3D structural analysis was carried out with ETABS software using 2 methods, Modal Pushover and Nonlinear Time History. The results shows that the selection of BRB elements greatly affected the structural performance, showed by the drift pattern. For regular structures with variation in heights, structures with BRB behaved satisfactory under the design load with the performance level of Immediate Occupancy (IO). Yielding was limited to BRB members, and afterwards the yielding occurred on beams until collapse. The results of modal pushover and time history analysis for 15-story structure are similar, thus modal pushover can be used to predict the performance of regular structural system with BRB.Keywords: structural performance, buckling restrained brace, immediate occupancy, modal pushover analysis, nonlinear time history analysis


Author(s):  
Kanthi Srirengan ◽  
Partha Chakrabarti ◽  
Rupak Ghosh

Two novel methods namely the Dominant Modes method and the All Modes method to predict the seismic-pushover load for the jacket-type structures are presented. Both of these methods are based on the linear superposition of the modal reactions. As a preliminary evaluation, the linear elastic response of a jacket structure subjected to seismic-pushover loads is compared with that obtained from the response spectrum analysis. Furthermore, the nonlinear inelastic behavior obtained from the seismic-pushover analysis is compared with that obtained from the nonlinear time-history analysis, for a portal frame subjected to El Centro earthquake motion. When more than one mode is dominant in an excitation direction, both the linear elastic and the nonlinear inelastic responses obtained using the loads generated from the All Modes method are representative of the reference solutions.


2016 ◽  
Vol 32 (4) ◽  
pp. 427-433
Author(s):  
H.-L. Wang ◽  
S.-W. Liu ◽  
Z. Zhang

AbstractTo study the seismic performance and the effects of different joint shapes for unbonded precast segmental bridge columns under low-reversed cyclic loading, two 3-D finite element (FE) models respectively using plane-contact joints and shear resistant joints were established. In the FE models, the mechanical behaviors of concrete and tendons were respectively described by the damage-plastic model and the bilinear model, and the contact criteria was based on Coulomb's Friction. The results of nonlinear time history analysis showed that the deformation of the columns was mainly composed of alternately open-closed joints, and the failure of the column was mainly caused by concrete crush on the bottom segment. Compared with two model's hysteresis loop, backbone curve, ductility and residual deformation, it was found that the column with shear resistant joints had longer stable period of strength, better ductility, and smaller residual displacement than the column with plane-contact joints, so it had better seismic performance.


2011 ◽  
Vol 243-249 ◽  
pp. 1396-1400
Author(s):  
Yong Sheng Qi ◽  
Feng Hua Zhao ◽  
Jun Wen Zhou

Influence of strength variability of braces on the weak shear type concentrically-braced steel frames is studied by pushover and nonlinear time history analysis method, which leads to a conclusion that the overstrength of brace has obviously detrimental influence on the seismic performance of the structure, induces stronger seismic reaction and higher seismic risk. Another valuable discovery is that after the area of the braces of weak shear type centrically-braced steel frames are determined according to the requirement of current codes, the designer can intentionally specify the structural steel of comparatively low strength (for example, the 2nd group in the paper taking 70% strength of steel Q235) for the brace, which can provide the structure more excellent seismic performance.


2012 ◽  
Vol 204-208 ◽  
pp. 2658-2661 ◽  
Author(s):  
Biao Wei ◽  
Shan Shan Li

As to improve bridges’ seismic performance, horizontal earthquake was isolated at the bottom of piers. With one pier system as the object of study, adopting nonlinear time history analysis analyzed the un-isolation system, the traditional isolation system and the new isolation system’s seismic performance especially when the actual earthquake was different from the design earthquake, in which the new isolation system was based on rolling balls. Results shows, as for the new isolation system, the internal force is independent of earthquake accelerations and earthquake periods, therefore, sympathetic vibration will not exist, and the internal force is always too small to destroy the system.


Author(s):  
Hye-min Shin ◽  
Kyung-jae Shin ◽  
Su-woong Lee ◽  
Dae-geun Kim ◽  
Min-ki Lee ◽  
...  

On November 15, 2017, the second strongest earthquake occurred in Korea, which was 5.4 in size on the Richter Scale. The duration of the earthquake was short, but the damage was serious. Two recent earthquakes have shown that our country is no longer safe from earthquakes. However, to date, Korean structures are showing a low earthquake resistance, and seismic retrofitting is necessary in preparation for a large-scale earthquake. In this study, reinforcing effect of steel slit damper was analyzed based on the dynamic test results of the previously studied reinforced concrete frame. After that, push over analysis and nonlinear time history analysis using OpenSees were selected for the residential piloti-type building as the target building. In the above Korean earthquake, the damage to the piloti-type building was conspicuous. Through analysis, the vulnerable part of the piloti-type building was identified and the seismic strengthening with the steel slit damper was carried out.


2014 ◽  
Vol 30 (4) ◽  
pp. 1601-1618 ◽  
Author(s):  
Arash Sahraei ◽  
Farhad Behnamfar

Relative displacement is a parameter that has a very high correlation with damage. The objective of this article is to develop an analysis procedure founded on the displacement-based seismic design methodology. Generalized interstory drift spectrum is applied as an essential tool in this new method called drift pushover analysis. In order to evaluate the behavior of structures, three demand parameters—lateral displacement, story shear, and plastic hinge rotation—are computed with conventional pushover analysis (CPA), modal pushover analysis (MPA), and drift pushover analysis (DPA), and are compared with those of the nonlinear time history analysis (NTA). It is observed that the new method, DPA, predicts the peak response measures more precisely and with less effort than the other nonlinear pushover procedures investigated in this study.


Author(s):  
Deepan Dev B ◽  
Dr V Selvan

The seismic response of special moment-resisting frames (SMRF), buckling restrained braced (BRB) frames and self-centering energy dissipating (SCED) braced frames is compared when used in building structures many stories in height. The study involves pushover analysis as well as 2D and 3D nonlinear time history analysis for two ground motion hazard levels. The SCED and BRB braced frames generally experienced similar peak interstory drifts. The SMRF system had larger interstory drifts than both braced frames, especially for the shortest structures. The SCED system exhibited a more uniform distribution of the drift demand along the building height and was less prone to the biasing of the response in one direction due to P-Delta effects. The SCED frames also had significantly smaller residual lateral deformations. The two braced frame systems experienced similar interstory drift demand when used in torsional irregular structures.


2020 ◽  
Vol 6 (2) ◽  
pp. 344-362
Author(s):  
Niyonyungu Ferdinand ◽  
Zhao Jianchang ◽  
Yang Qiangqiang ◽  
Guobing Wang ◽  
Xu Junjie

This paper examines the application of BRB in strengthening of reinforced concrete frame structures to meet seismic requirements according to Chinese seismic design code. Elastic response spectrum analysis and nonlinear time history analysis are performed by taking a real engineering example that suffers weak first floor irregularity due to added loads and addition of one floor. With the method of equivalent stiffness and displacement-based design method, buckling restrained brace parameters are deduced and are used to model BRB in ETABS using plastic wen model. Three configurations of buckling restrained braces are studied together with ordinary braces. Under elastic state, the relationship between the required cross section area of BRB and ordinary braces is deduced from the formula of calculating elastic bearing capacity where it is shown that the area of the ordinary braces must be 1.25 times that of BRB for ensuring the same performance. The results show that Inverted V brace configuration demonstrated better performance over single brace and V brace configurations and X brace configuration, although not recommended by Chinese code, is simulated and used in this paper and has demonstrated better performance over other configurations, and the further research on the practical use of this brace is recommended. Also, under action of strong earthquakes, by nonlinear time history analysis, buckling restrained braces demonstrated better performance of strengthening the structure and make it meet the requirement of code. Under this same condition, ordinary braces losses their bearing capacity due to excessive buckling.


Sign in / Sign up

Export Citation Format

Share Document