The Effect of Weather Dependent Line Tension Optimization in Design

Author(s):  
Siril Okkenhaug ◽  
Ivar Fylling ◽  
Sverre Haver ◽  
Tom Marthinsen
Keyword(s):  
1999 ◽  
Vol 96 (9) ◽  
pp. 1335-1339 ◽  
Author(s):  
ALAN E. VAN GIESSEN, DIRK JAN BUKMAN, B.

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1020
Author(s):  
Xiao-Zhi Tang ◽  
Ya-Fang Guo

The interaction between a lattice dislocation and non-shearable precipitates has been well explained by the Orowan bypass mechanism. The calculated additional shear stress facilitates the evaluation of precipitation hardening in metallic alloys. The lack of information about how a twinning dislocation behaves in the same scenario hinders our understanding of the strengthening against twin-mediated plasticity in magnesium alloys. In the current study, the bowing and bypassing of a twining dislocation impeded by impenetrable obstacles are captured by atomistic simulations. The Orowan stress measurement is realized by revealing the stick-slip dynamics of a twinning dislocation. The measured Orowan stress significantly deviate from what classic theory predicts. This deviation implies that the line tension approximation may generally overestimate the Orowan stress for twinning dislocations.


2003 ◽  
Vol 798 ◽  
Author(s):  
Angelika Vennemann ◽  
Jens Dennemarck ◽  
Roland Kröger ◽  
Tim Böttcher ◽  
Detlef Hommel ◽  
...  

ABSTRACTGaN samples of this study were chemically wet etched to gain easier access to the dislocation sturcture. The scanning electron microscopy and transmission electron microscopy investigations revealed four different types of etch pits. After brief etching, several dislocations with screw component showed large etch pits, which may be correlated with the core of the screw dislocation. By means of SiNx micromasking the dislocation density could be reduced by more than one order of magnitude. The reduction of threading dislocations in the SiNx region in GaN grown on 〈0001〉 sapphire is due to bending of the threading dislocations into the {0001} plane, such that they form dislocation loops if they meet dislocations with opposite Burgers vectors. Accordingly, the achievable reduction of the dislocation density is limited by the probability that these dislocations interact. Edge dislocations bend more easily on account of their low line tension. This results in a preferential bending and reduction of dislocations with edge character.


Author(s):  
Yijun Wang ◽  
Alex van Deyzen ◽  
Benno Beimers

In the field of port design there is a need for a reliable but time-efficient method to assess the behavior of moored ships in order to determine if further detailed analysis of the behavior is required. The response of moored ships induced by gusting wind and/or waves is dynamic. Excessive motion response may cause interruption of the (un)loading operation. High line tension may cause lines to snap, introducing dangerous situations. A (detailed) Dynamic Mooring Analysis (DMA), however, is often a time-consuming and expensive exercise, especially when responses in many different environmental conditions need to be assessed. Royal HaskoningDHV has developed a time-efficient computational tool in-house to assess the wave (sea or swell) induced dynamic response of ships moored to exposed berths. The mooring line characteristics are linearized and the equations of motion are solved in the frequency domain with both the 1st and 2nd wave forces taken into account. This tool has been termed Less=Moor. The accuracy and reliability of the computational tool has been illustrated by comparing motions and mooring line forces to results obtained with software that solves the nonlinear equations of motion in the time domain (aNySIM). The calculated response of a Floating Storage and Regasification Unit (FSRU) moored to dolphins located offshore has been presented. The results show a good comparison. The computational tool can therefore be used to indicate whether the wave induced response of ships moored at exposed berths proves to be critical. The next step is to make this tool suitable to assess the dynamic response of moored ships with large wind areas, e.g. container ships, cruise vessels, RoRo or car carriers, to gusting wind. In addition, assessment of ship responses in a complicated wave field (e.g. with reflected infra-gravity waves) also requires more research effort.


1967 ◽  
Vol 17 (2) ◽  
pp. 246-251 ◽  
Author(s):  
N.L. Gershfeld ◽  
R.J. Good
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document