Flood Risk Under Current and Future Climate Scenarios in Auckland City (New Zealand)

Author(s):  
K. G. Dayananda ◽  
Jagath Pathirana ◽  
M. Jim Salinger ◽  
A. Brett Mullan ◽  
Matthew D. Davis ◽  
...  
Risk Analysis ◽  
2019 ◽  
Vol 40 (4) ◽  
pp. 884-898
Author(s):  
Gina Tonn ◽  
Seth Guikema ◽  
Benjamin Zaitchik

2022 ◽  
Vol 9 ◽  
Author(s):  
Javier Atalah ◽  
Ian C. Davidson ◽  
Maike Thoene ◽  
Eugene Georgiades ◽  
Kate S. Hutson

The aquatic ornamental species (AOS) trade is a significant pathway for the introduction and establishment of non-indigenous species into aquatic environments. The likelihood of such occurrences is expected to increase worldwide as industry growth continues and warmer conditions emerge under future climate scenarios. This study used recent (2015 – 2019) New Zealand importation data to determine the composition, diversity, abundance, and arrival frequency of AOS. Our analysis revealed that ca. 300,000 aquatic ornamental individuals are imported annually to New Zealand, with freshwater fish comprising 98% of import quantities. Despite the relatively small market size, the estimated AOS diversity of 865 taxa (89 and 9.5% identified to species and genus level, respectively) is comparable to larger markets with ∼60% of taxa being of marine origin. Species (n = 20) for further investigation were prioritized based on quantity and frequency of import. These prioritized AOS were exclusively tropical and subtropical freshwater fish and align with the most frequently imported AOS globally, including the top three: neon tetra (Paracheirodon innesi), guppy (Poecilia reticulata), and tiger barb (Puntigrus tetrazona). Species distribution modeling of the 20 prioritized AOS predicted that 13 species are suitable for New Zealand’s current climate conditions, most notably sucker-belly loach (Pseudogastromyzon myersi), white cloud mountain minnow (Tanichthys albonubes), and golden otocinclus (Macrotocinclus affinis). Potential changes in habitat suitability were predicted under future climate scenarios, with largest increases (29%) for Po. reticulata. The described approach provides an adaptable framework to assess establishment likelihood of imported AOS to inform regulatory decision making.


2021 ◽  
Author(s):  
Jing Yang ◽  
Channa Rajanayaka ◽  
Lawrence Kees ◽  
Christian Zammit

<p>Climate and its variability have a considerable impact on seasonal water resources availability. Understanding the impact of climate change and the time lagged  response in areas where groundwater is the main water resource supporting human activity (water supply, agriculture and industry), is necessary to manage potentially damaging consequences for hydrologically-driven ecological functions, ecosystem services, economic response and adaptation, cultural values and recreation.  </p><p>In this study, we assess the impact of climate change on groundwater in Edendale area, South New Zealand, which has been experiencing increasing water abstraction pressure and declining groundwater level. We use downscaled CMIP5 IPCC climate predictions to drive a hydrologic model (TopNet) to simulate changes in land surface recharge (LSR) under different climate models and future climate scenarios (i.e. RCPs – Representative Concentration Pathways) , and then the ensemble of LSR simulations further drive the Edendale groundwater model (MODFLOW) to simulate groundwater system.</p><p>Our initial result show: in spite of differences in simulations of different climate models and future climate scenarios, to the end of this century, there will be a slight annual increasing trend both for precipitation and LSR, significantly in Autumn and less significantly in other seasons; generally groundwater level and groundwater discharge (to rivers) will be increasing, following seasonal and annual patterns of changes in precipitation and LSR; differences are large for both climate models and future scenarios, largest for RCP8.5 and smallest for RCP2.6. We hope the results will support the long-term water management planning in the Edendale area.</p>


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0130294 ◽  
Author(s):  
Anna Zuliani ◽  
Alessandro Massolo ◽  
Timothy Lysyk ◽  
Gregory Johnson ◽  
Shawn Marshall ◽  
...  

2016 ◽  
Vol 283 (1831) ◽  
pp. 20160442 ◽  
Author(s):  
Emma F. Camp ◽  
David J. Smith ◽  
Chris Evenhuis ◽  
Ian Enochs ◽  
Derek Manzello ◽  
...  

Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50–100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals ( Acropora palmata and Porites astreoides ) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats.


Sign in / Sign up

Export Citation Format

Share Document