Study on the Technology of Trenchless Pipelines Construction and its Corresponding Impact on Geological Stratum Deformation Modulus

ICPTT 2009 ◽  
2009 ◽  
Author(s):  
Hui Peng ◽  
Xinting Liu ◽  
Yu-jiang Li
2010 ◽  
Vol 33 (2) ◽  
pp. 153-158
Author(s):  
Mohamed Hassan Aboud ◽  
Mohamed Ahmad Osman

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 428
Author(s):  
Alexander Korolev ◽  
Maxim Mishnev ◽  
Dmitry Zherebtsov ◽  
Nikolai Ivanovich Vatin ◽  
Maria Karelina

The polymer deformability under load and heating is the determining factor in calculating reinforced polymer structures used under heating. Deformability–load/temperature relations make it possible to calculate temperature stresses and deformations in bearing cross-sections of polymer structures such as chimneys, smokestacks, etc. The present study suggests a method of calculating deformability of polymers subjected to the temperature loads. The method is based on the structure model of pack or layer bonded polymer domains where the elasticity of rigid bonds decreases with heating according to entropy principles. The method has been successfully tested on various polymers and compounds with due account for the effect of mineral additives on the deformation modulus increase.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1257
Author(s):  
Shuling Gao ◽  
Guanhua Hu

An improved hydraulic servo structure testing machine has been used to conduct biaxial dynamic compression tests on eight types of engineered cementitious composites (ECC) with lateral pressure levels of 0, 0.125, 0.25, 0.5, 0.7, 0.8, 0.9, 1.0 (the ratio of the compressive strength applied laterally to the static compressive strength of the specimen), and three strain rates of 10−4, 10−3 and 10−2 s−1. The failure mode, peak stress, peak strain, deformation modulus, stress-strain curve, and compressive toughness index of ECC under biaxial dynamic compressive stress state are obtained. The test results show that the lateral pressure affects the direction of ECC cracking, while the strain rate has little effect on the failure morphology of ECC. The growth of lateral pressure level and strain rate upgrades the limit failure strength and peak strain of ECC, and the small improvement is achieved in elastic modulus. A two-stage ECC biaxial failure strength standard was established, and the influence of the lateral pressure level and peak strain was quantitatively evaluated through the fitting curve of the peak stress, peak strain, and deformation modulus of ECC under various strain rates and lateral pressure levels. ECC’s compressive stress-strain curve can be divided into four stages, and a normalized biaxial dynamic ECC constitutive relationship is established. The toughness index of ECC can be increased with the increase of lateral pressure level, while the increase of strain rate can reduce the toughness index of ECC. Under the effect of biaxial dynamic load, the ultimate strength of ECC is increased higher than that of plain concrete.


1995 ◽  
Vol 32 (4) ◽  
pp. 199-204 ◽  
Author(s):  
Ravi Godbole ◽  
Ralph Alcock

2011 ◽  
Vol 261-263 ◽  
pp. 1679-1684
Author(s):  
Xiao Ling Liu ◽  
Shi Mei Wang ◽  
Yun Zhi Tan ◽  
Xin Jiang Hu ◽  
Dai Peng Zhao

The choice of similar materials and the design of mix proportions is a key step in landslide model test. On the basis of experiment, we conduct a research for the similar materials which may sufficing volume weight, cohesive force, angle of internal friction, deformation modulus, and the infiltration coefficient on the same time. Then we put forward two kinds of schemes: one is the mixed material of high-strength glass micro beads and talcum powder; the other is the mixed material of lead beads, river sands, rubber powder and talcum powder. By analyzing the result of mix proportions test, We concluded the regularity that similar index varies along with different content of the similar material ingredients and found the notable influence factors , which provides important reference for the components of similar materials in the landslide model test.


Author(s):  
I. I. Vedyakov ◽  
D. V. Konin ◽  
A. A. Egorova ◽  
I. V. Rtishcheva

The present work provides an overview and analysis of scientific, technical, regulatory, and methodical Russian and foreign literature regarding using glass as a material for load-bearing structures of buildings. In the absence of design standards, an experimental study of usually one or two samples is necessary each time glass structure is used; however, this is insufficient to determine the distinct pattern of material performance. Since jointing the glass structures has been rarely studied, the number of tests is minimal, thus preventing establishing the unambiguous material operation and its calculated physical and mechanical characteristics. The article considers and evaluates the test results of glass structures obtained by various methods. The particular values of ultimate stresses and deformation modulus lie in a wide range. The technology, manufacturing process, and starting materials have a significant influence on the characteristics of glass, including multilayer glass. This article stresses the need for developing regulatory technical and methodical documents, the design and testing standards for glass structures and their jointing. It is necessary to classify load-bearing glass structures by various criteria.


Sign in / Sign up

Export Citation Format

Share Document