scholarly journals Experimental Study on Biaxial Dynamic Compressive Properties of ECC

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1257
Author(s):  
Shuling Gao ◽  
Guanhua Hu

An improved hydraulic servo structure testing machine has been used to conduct biaxial dynamic compression tests on eight types of engineered cementitious composites (ECC) with lateral pressure levels of 0, 0.125, 0.25, 0.5, 0.7, 0.8, 0.9, 1.0 (the ratio of the compressive strength applied laterally to the static compressive strength of the specimen), and three strain rates of 10−4, 10−3 and 10−2 s−1. The failure mode, peak stress, peak strain, deformation modulus, stress-strain curve, and compressive toughness index of ECC under biaxial dynamic compressive stress state are obtained. The test results show that the lateral pressure affects the direction of ECC cracking, while the strain rate has little effect on the failure morphology of ECC. The growth of lateral pressure level and strain rate upgrades the limit failure strength and peak strain of ECC, and the small improvement is achieved in elastic modulus. A two-stage ECC biaxial failure strength standard was established, and the influence of the lateral pressure level and peak strain was quantitatively evaluated through the fitting curve of the peak stress, peak strain, and deformation modulus of ECC under various strain rates and lateral pressure levels. ECC’s compressive stress-strain curve can be divided into four stages, and a normalized biaxial dynamic ECC constitutive relationship is established. The toughness index of ECC can be increased with the increase of lateral pressure level, while the increase of strain rate can reduce the toughness index of ECC. Under the effect of biaxial dynamic load, the ultimate strength of ECC is increased higher than that of plain concrete.

2007 ◽  
Vol 558-559 ◽  
pp. 441-448 ◽  
Author(s):  
Jong K. Lee

During hot working, deformation of metals such as copper or austenitic steels involves features of both diffusional flow and dislocation motion. As such, the true stress-true strain relationship depends on the strain rate. At low strain rates (or high temperatures), the stress-strain curve displays an oscillatory behavior with multiple peaks. As the strain rate increases (or as the temperature is reduced), the number of peaks on the stress-strain curve decreases, and at high strain rates, the stress rises to a single peak before settling at a steady-state value. It is understood that dynamic recovery is responsible for the stress-strain behavior with zero or a single peak, whereas dynamic recrystallization causes the oscillatory nature. In the past, most predictive models are based on either modified Johnson-Mehl-Avrami kinetic equations or probabilistic approaches. In this work, a delay differential equation is utilized for modeling such a stress-strain behavior. The approach takes into account for a delay time due to diffusion, which is expressed as the critical strain for nucleation for recrystallization. The solution shows that the oscillatory nature depends on the ratio of the critical strain for nucleation to the critical strain for completion for recrystallization. As the strain ratio increases, the stress-strain curve changes from a monotonic rise to a single peak, then to a multiple peak behavior. The model also predicts transient flow curves resulting from strain rate changes.


2020 ◽  
Vol 10 (10) ◽  
pp. 3351
Author(s):  
Bo Ke ◽  
Jian Zhang ◽  
Hongwei Deng ◽  
Xiangru Yang

The effect of temperature fluctuation on rocks needs to be considered in many civil engineering applications. Up to date the dynamic characteristics of rock under freeze-thaw cycles are still not quite clearly understood. In this study, the dynamic mechanical properties of sandstone under pre-compression stress and freeze-thaw cycles were investigated. At the same number of freeze-thaw cycles, with increasing axial pre-compression stress, the dynamic Young’s modulus and peak stress first increase and then decrease, whereas the dynamic peak strain first decreases and then increases. At the same pre-compression stress, with increasing number of freeze-thaw cycles, the peak stress decreases while the peak strain increases, and the peak strain and peak stress show an inverse correlation before or after the pre-compression stress reaches the densification load of the static stress–strain curve. The peak stress and strain both increase under the static load near the yielding stage threshold of the static stress–strain curve. The failure mode is mainly shear failure, and with increasing axial pre-compression stress, the degree of shear failure increases, the energy absorption rate of the specimen increases first and then decreases. With increasing number of freeze-thaw cycles, the number of fragments increases and the size diminishes, and the energy absorption rates of the sandstone increase.


2016 ◽  
Vol 836-837 ◽  
pp. 484-492
Author(s):  
Hui Ping Zhang ◽  
Na Zhao ◽  
Xu Shi ◽  
Xiao Lei Zhang ◽  
Yi Ren

300M ultrahigh strength steel has good mechanical properties. It has been widely used in the force bearing components of aircraft. In this paper, By using Gleeble1-500D thermal simulator, we studied the change regularity of stress-strain curve of 300M steel using hot compression deformation when temperature is from 800°C to1100°C, strain rate is from 0.001 S-1to 1 S-1 and the strain is 0.7.The experimental results showed that when the strain rate is constant, the flow stress and the peak stress decrease with the increase of deformation temperature. When the deformation temperature is constant, the flow stress and peak stress increase with the increase of strain rate. From the test, we got the true stress-strain curve, calculated the thermal deformation constants such as the deformation activation energy of 300M ultrahigh strength steel. Eventually, we built the thermal deformation constitutive model in hyperbolic sine form of 300M steel.


Author(s):  
Sanjeev K. Khanna ◽  
Ha T. T. Phan

A compressive split Hopkinson pressure bar (SHPB) was used to investigate the dynamic mechanical behavior of graphene (GR) reinforced polyurethane (PU) composites (GR/PU) at high strain rates ranging from approximately 1500 s−1 to 5000 s−1. Four types of GR/PU composites with different GR contents: 0.25% GR, 0.5% GR, 0.75% GR, and 1% GR were prepared by the solution mixing method and divided into two groups of unheated and postheated specimens. Experimental results show that the GR/PU composite is a strong strain rate dependent material, especially in the high strain rate regime of 3000 s−1–5000 s−1. The dynamic mechanical properties of GR/PU composite in terms of plateau stress, peak stress, and peak load carrying capacity are better than that of pristine PU at most of the applied strain rates. Among the four different GR concentrations used, the 0.5 wt.%-GR specimen shows the highest peak stress, and the 1 wt.% GR specimen has the highest plateau stress; while no significant change in peak strain with changing GR weight fraction was observed. Compared to unheated specimens, the plateau stress, peak stress, and peak strain of postheated specimens are significantly higher.


2013 ◽  
Vol 690-693 ◽  
pp. 1737-1740
Author(s):  
Lin Bu ◽  
Tao Xu ◽  
Yun Jie Zhang

The mechanical properties of granite experiencing high temperatures under uniaxial compression condition were simulated in this paper. Numerically simulated stress-strain curve, peak stress, peak strain and the tangent elastic modulus were compared with the corresponding physical tests. Simulated results agree well with physical tests results, it is shown that Abaqus is suitable for the analysis of the temperature effect on rock fracture.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Y. W. Kwon ◽  
Y. Esmaeili ◽  
C. M. Park

Because most structures are subjected to transient strain-rate loading, an experimental study was conducted to investigate the stress-strain behaviors of an aluminum alloy undergoing varying strain-rate loading. To this end, uniaxial tensile loading was applied to coupons of dog-bone shape such that each coupon underwent two or three different strain-rates, i.e., one rate after another. As a basis, a series of single-strain-rate tests was also conducted with strain-rates of 0.1–10.0 s−1. When the material experienced multistrain-rate loading, the stress-strain curves were significantly different from any single-strain-rate stress-strain curve. The strain-rate history affected the stress-strain curves under multistrain-rate loading. As a result, some simple averaging of single-strain-rate curves did not predict the actual multistrain-rate stress-strain curve properly. Furthermore, the fracture strain under multistrain-rate loading was significantly different from that under any single-strain-rate case. Depending on the applied strain-rates and their sequences, the former was much greater or less than the latter. A technique was proposed based on the residual plastic strain and plastic energy density in order to predict the fracture strain under multistrain-rate loading. The predicted fracture strains generally agreed well with the experimental data. Another observation that was made was that the unloading stress-strain curve was not affected by the previous strain-rate history.


Author(s):  
Kok Ee Tan ◽  
John H. L. Pang

In this paper, the strain-rate dependent mechanical properties and stress-strain curve behavior of Sn3.8Ag0.7Cu (SAC387) solder is presented for a range of strain-rates at room temperature. The apparent elastic modulus, yield stress properties and stress-strain curve equation of the solder material is needed to facilitate finite element modeling work. Tensile tests on dog-bone shaped bulk solder specimens were conducted using a non-contact video extensometer system. Constant strain-rate uni-axial tensile tests were conducted over the strain-rates of 0.001, 0.01, 0.1 and 1 (s−1) at 25°C. The effects of strain-rate on the stress-strain behavior for lead-free Sn3.8Ag0.7Cu solder are presented. The tensile yield stress results were compared to equivalent yield stress values derived from nano-indentation hardness test results. Constitutive models based on the Ramberg-Osgood model and the Cowper-Symond model were fitted for the tensile test results to describe the elastic-plastic behavior of solder deformation behavior.


DYNA ◽  
2020 ◽  
Vol 87 (213) ◽  
pp. 52-60
Author(s):  
Luis Miguel Zabala Gualtero ◽  
Ulises Figueroa López ◽  
Andrea Guevara Morales ◽  
Alejandro Rojo Valerio

Simulations of impact events in the automotive industry are now common practice. Vehicle crashworthiness simulations on plastic components cover a wide range of strain rates from 0.01 to 500 s-1. Because plastics mechanical properties are very dependent on strain rate, developing experimental methods for generating stress-strain curves at this strain rate range is of great technological importance. In this paper, a modified Charpy machine capable of acquiring useful information to obtain the stress-strain curve is presented. Strain rates between 300 to 400 s-1 were achieved. Three thermoplastics were tested: high-density polyethylene, polypropylene-copolymer and polypropylene-homopolymer. Impact simulations using LS-DYNA were performed using the acquired high-strain rates stress-strain curves and compared with experimental data. Simulations using stress-strain curves from quasi-static tests were also performed for comparison. Very good agreement between the simulation and experimental results was found when the ASTM D1822 type S specimen was used for testing each material.


2012 ◽  
Vol 450-451 ◽  
pp. 822-826
Author(s):  
Lin Zhu Sun ◽  
Tie Cheng Wang ◽  
Fang Yang

To establish complete stress-strain curve equations for confined concrete in cross-shaped columns, we designed 7 test specimens corresponding to the usable eigenvalue range of stirrup of the cross-shaped columns. We obtained the test results of the reinforced concrete cross-shaped columns through axial compression test, got the system parameters of a stress-strain model through statistical analysis of the test data, and then established stress-strain curves for confined concrete in the cross-shaped columns. This model reflects the variation rule of the stress-strain curve of confined concrete in cross-shaped columns. Compared with the stress-strain model for confined concrete in square columns, the confined concrete in cross-shaped columns has smaller peak stress, larger peak strain, and relatively steeper descending part of curve. The research results provide theorotical basis for nonlinear analysis of cross-shaped columns.


2011 ◽  
Vol 261-263 ◽  
pp. 1234-1238
Author(s):  
Rui Hong Wang ◽  
Yu Zhou Jiang ◽  
Jing Guo ◽  
Shi Yi Wen

For geotechnical engineering, it has great significance to research the mechanical characteristics of rock mass under three dimensional stresses. Through triaxial compression failure test, the characteristics of stress-strain curve and deformation of red sandstone from Sichuan under different confining pressures has been analyzed. The results show that: with the increment of confining pressure, the failure mode of rock mass changes from brittle failure to ductile failure gradually, and an obvious yield platform appears near the peak strength of stress-strain curve; the elastic modulus, deformation modulus, peak strain and residual strain of rock sample increase with the increment of confining pressure, the elastic modulus and deformation modulus are not a fixed value, and the relation between deformation parameter and confining pressure can be fit through quadratic curve.


Sign in / Sign up

Export Citation Format

Share Document