A New Nearshore Directional Wave Gage

Author(s):  
Gary L. Howell
Keyword(s):  
2021 ◽  
Vol 230 ◽  
pp. 109057
Author(s):  
Mohammad Adibzade ◽  
Mehdi Shafieefar ◽  
Hassan Akbari ◽  
Roozbeh Panahi

2021 ◽  
Author(s):  
Robert Edward Jensen ◽  
Val Swail ◽  
Richard Harry Bouchard

AbstractAn intra-measurement evaluation was undertaken, deploying a NOMAD buoy equipped with three National Data Buoy Center and two Environment and Climate Change Canada-AXYS sensor/payload packages off Monterey, California; a Datawell Directional Waverider buoy was deployed within 19 km of the NOMAD site. The six independent wave measurement systems reported hourly estimates of the frequency spectra, and when applicable, the four Fourier directional components. The integral wave parameters showed general agreement among the five sensors compared to the neighboring Datawell Directional Waverider, with the Inclinometer and the Watchman performing similarly to the more sophisticated 3DMG, HIPPY, and Triaxys sensor packages. As the Hm0 increased, all but the Inclinometer were biased low; however, even the Watchman reported reasonable wave measurements up to about 6–7 m, after which the Hm0 becomes negatively biased up to about a meter, comparable to previous studies. The parabolic fit peak spectral wave period, Tpp, results showed a large scatter, resulting from the complex nature of multiple swell wave systems compounded by local wind-sea development, exacerbated by a variable that can be considered as temporally unstable. The three directional sensors demonstrated that NOMAD buoys are capable of measuring directional wave properties along the western US coast, with biases of about 6 to 9 deg, and rms errors of approximately 30 deg. Frequency spectral evaluations found similarities in the shape, but a significant under estimation in the high frequency range. The results from slope analyses also revealed a positive bias in the rear face of the spectra, and a lack of invariance in frequency as suggested by theory.


2010 ◽  
Vol 40 (1) ◽  
pp. 155-169 ◽  
Author(s):  
Heidi Pettersson ◽  
Kimmo K. Kahma ◽  
Laura Tuomi

Abstract In slanting fetch conditions the direction of actively growing waves is strongly controlled by the fetch geometry. The effect was found to be pronounced in the long and narrow Gulf of Finland in the Baltic Sea, where it significantly modifies the directional wave climate. Three models with different assumptions on the directional coupling between the wave components were used to analyze the physics responsible for the directional behavior of the waves in the gulf. The directionally decoupled model produced the direction at the spectral peak correctly when the slanting fetch geometry was narrow but gave a weaker steering than observed when the fetch geometry was broader. The method of Donelan estimated well the direction at the spectral peak in well-defined slanting fetch conditions, but overestimated the longer fetch components during wave growth from a more complex shoreline. Neither the decoupled nor the Donelan model reproduced the observed shifting of direction with the frequency. The performance of the third-generation spectral wave model (WAM) in estimating the wave directions was strongly dependent on the grid resolution of the model. The dominant wave directions were estimated satisfactorily when the grid-step size was dropped to 5 km in the gulf, which is 70 km in its narrowest part. A mechanism based on the weakly nonlinear interactions is proposed to explain the strong steering effect in slanting fetch conditions.


Author(s):  
J. M. Fraile ◽  
J. Sabina

SynopsisIn this paper, we introduce a new class of solutions of reaction-diffusion systems, termed directional wave front solutions. They have a propagating character and the propagation direction selects some distinguished boundary points on which we can impose boundary conditions. The Neumann and Dirichlet problems on these points are treated here in order to prove some theorems on the existence of directional wave front solutions of small amplitude, and to partially establish their asymptotic behaviour.


2007 ◽  
Vol 276 (2) ◽  
pp. 246-250 ◽  
Author(s):  
Manmohan Singh Shishodia ◽  
Anurag Sharma

Sign in / Sign up

Export Citation Format

Share Document