Variation of the Schottky barrier height of the differently oriented CoGa on GaAs by molecular beam epitaxy

1992 ◽  
Vol 61 (24) ◽  
pp. 2869-2871 ◽  
Author(s):  
T. C. Kuo ◽  
K. L. Wang ◽  
R. Arghavani
1996 ◽  
Vol 74 (S1) ◽  
pp. 104-107
Author(s):  
Z. Pang ◽  
P. Mascher ◽  
J. G. Simmons ◽  
D. A. Thompson

In our investigations, Au, Al, Ni, Pt, Ti, and combinations thereof were deposited on InP and InGaAs by e-beam evaporation to form Schottky contacts. The Schottky-barrier heights of these diodes determined by forward I–V and (or) reverse C–V measurements lie between 0.38–0.48 eV. To increase the Schottky-barrier height, a strained GaxIn1−xP layer was inserted between the electrode metal(s) and the semiconductor. This material, which has a band-gap larger than InP, was grown by gas-source molecular beam epitaxy. The Schottky-barrier heights, which generally depend on the gallium fraction, x, and the thickness of the strained GaxIn1−xP layer, increase and are in the range of 0.56–0.65 eV in different contact schemes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


Sign in / Sign up

Export Citation Format

Share Document