Spectroscopic ellipsometry determination of the refractive index of strained Si1−xGex layers in the near‐infrared wavelength range (0.9–1.7 μm)

1995 ◽  
Vol 67 (23) ◽  
pp. 3402-3404 ◽  
Author(s):  
J. C. G. de Sande ◽  
A. Rodríguez ◽  
T. Rodríguez
Nano Letters ◽  
2016 ◽  
Vol 16 (7) ◽  
pp. 4641-4647 ◽  
Author(s):  
Wei-Chuan Shih ◽  
Greggy M. Santos ◽  
Fusheng Zhao ◽  
Oussama Zenasni ◽  
Md Masud Parvez Arnob

2021 ◽  
Author(s):  
Yuan-Fong Chou Chau

Abstract A multiple-mode metal-insulator-metal plasmonic sensor with four coupled bowtie resonators containing two pair of silver baffles is numerically investigated using the finite element method and verified by the temporal coupled-mode theory. The proposed structure can function as the plasmonic refractive index and glucose sensors working in visible and near-infrared wavelength range. Simulation results show that introducing the silver baffles in bowtie cavities can modify the plasmon resonance modes and give a tunable way to enhance the sensitivity and figure of merit. The highest sensitivity (S) can reach S=1500.00, 1400.00, and 1100.00 nm/RIU and the high figure of merit (FOM) of 50.00, 46.67, and 36.67 RIU-1 from mode 1 to mode 3. The sensitivity obtained from three modes with operating wavelengths in visible and near-infrared simultaneously exceeds 1100.00 nm/RIU along with remarkably high FOM, which are not attainable from other reported literature. The proposed structure can realize multi-mode and shows impressive practical prospects that can be applied for integrated optics circuits (IOCs) and other nanophotonics devices.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 41
Author(s):  
Najat Andam ◽  
Siham Refki ◽  
Hidekazu Ishitobi ◽  
Yasushi Inouye ◽  
Zouheir Sekkat

The determination of optical constants (i.e., real and imaginary parts of the complex refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate determination of nc and d. In this paper, we use SPR and profilometry to determine the complex refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer concentrations (a feature which constitutes the originality of this work), and we compare the SPR results with those obtained by using spectroscopic ellipsometry measurements performed on the same samples. To determine the optical properties of our film samples by ellipsometry, we used, for the theoretical fits to experimental data, Bruggeman’s effective medium model for the dye/polymer, assumed as a composite material, and the Lorentz model for dye absorption. We found an excellent agreement between the results obtained by SPR and ellipsometry, confirming that SPR is appropriate for measuring the optical properties of very thin coatings at a single light frequency, given that it is simpler in operation and data analysis than spectroscopic ellipsometry.


2011 ◽  
Vol 9 (11) ◽  
pp. 4199 ◽  
Author(s):  
Shuji Ikeda ◽  
Hiroyuki Yanagisawa ◽  
Akiko Nakamura ◽  
Dan Ohtan Wang ◽  
Mizue Yuki ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7452
Author(s):  
Muhammad A. Butt ◽  
Andrzej Kaźmierczak ◽  
Cuma Tyszkiewicz ◽  
Paweł Karasiński ◽  
Ryszard Piramidowicz

In this paper, a novel and cost-effective photonic platform based on silica–titania material is discussed. The silica–titania thin films were grown utilizing the sol–gel dip-coating method and characterized with the help of the prism-insertion technique. Afterwards, the mode sensitivity analysis of the silica–titania ridge waveguide is investigated via the finite element method. Silica–titania waveguide systems are highly attractive due to their ease of development, low fabrication cost, low propagation losses and operation in both visible and near-infrared wavelength ranges. Finally, a ring resonator (RR) sensor device was modelled for refractive index sensing applications, offering a sensitivity of 230 nm/RIU, a figure of merit (FOM) of 418.2 RIU−1, and Q-factor of 2247.5 at the improved geometric parameters. We believe that the abovementioned integrated photonics platform is highly suitable for high-performance and economically reasonable optical sensing devices.


1993 ◽  
Vol 1 (1) ◽  
pp. 25-32 ◽  
Author(s):  
P. C. Williams ◽  
D.C. Sobering

Near infrared transmittance and reflectance instruments were compared for the determination of protein, oil, moisture and some other constituents and parameters in several grains and seeds of commerce. Both approaches were comparable in accuracy and reproducibility. The importance of optimisation of the wavelength range in whole grain analysis is demonstrated for measurements in both the NIR and visible/NlR wavelength ranges. The RPD statistic, which relates the standard error of prediction to the standard deviation of the original data, is illustrated as a method for the evaluation of calibrations. The concept of monitoring the accuracy of analysis using whole grain calibrations with ground grain calibrations is introduced.


Sign in / Sign up

Export Citation Format

Share Document