Thermodynamic equilibrium and metal-organic interface dipole

2002 ◽  
Vol 81 (15) ◽  
pp. 2752-2754 ◽  
Author(s):  
Li Yan ◽  
N. J. Watkins ◽  
S. Zorba ◽  
Yongli Gao ◽  
C. W. Tang
2018 ◽  
Author(s):  
Cory Simon ◽  
carlo carraro

<div>In the two-balloon experiment, two rubber balloons are connected and allowed to exchange gas. Owing to the non-monotonic relationship between the radius of the balloon and the pressure of gas inside of it, the two-balloon system presents multi- and in-stabilities.</div><div><br></div><div>Herein, we consider a two-adsorbent system, where two different adsorbents are allowed to exchange gas. We show that, for rigid adsorbents, the thermodynamic equilibrium state is unique.</div><div><br></div><div>Then, we consider an adsorbent-balloon system, where an adsorbent exchanges gas with a rubber balloon. This system can exhibit multiple states at thermodynamic equilibrium-- two (meta)stable and one unstable. The size of the balloon, pressure of gas in the balloon, and partitioning of gas between the adsorbent and the balloon differ among the equilibrium states. Temperature changes and the addition/removal of gas into/from the adsorbent-balloon system can induce catastrophe bifurcations and show hysteresis. Furthermore, the adsorbent-balloon system exhibits a critical temperature where, when approached from below, the discrepancy of balloon size between the two (meta)stable states decreases and, beyond, bistability is impossible.</div><div><br></div><div>Practically, our findings preclude multiple partitions of adsorbed gas in rigid mixed-linker metal-organic frameworks and may inspire new soft actuator and sensor designs.</div>


Author(s):  
Cory M. Simon ◽  
Carlo Carraro

In the two-balloon experiment, two rubber balloons are connected and allowed to exchange gas. Owing to the non-monotonic relationship between the radius of the balloon and the pressure of gas inside it, the two-balloon system presents multi- and in-stabilities. Herein, we consider a two-adsorbent system, where two different adsorbents are allowed to exchange gas. We show that, for rigid adsorbents, the thermodynamic equilibrium state is unique. Then, we consider an adsorbent–balloon system, where an adsorbent exchanges gas with a rubber balloon. This system can exhibit multiple states at thermodynamic equilibrium– two (meta)stable and one unstable. The size of the balloon, pressure of gas in the balloon, and partitioning of gas between the adsorbent and the balloon differ among the equilibrium states. Temperature changes and the addition/removal of gas into/from the adsorbent–balloon system can induce catastrophe bifurcations and show hysteresis. Furthermore, the adsorbent–balloon system exhibits a critical temperature where, when approached from below, the discrepancy of balloon size between the two (meta)stable states decreases and, beyond, bistability is impossible. Practically, our findings preclude multiple partitions of adsorbed gas in rigid, mixed-linker or stratified metal-organic frameworks and may inspire new soft actuator and sensor designs.


2018 ◽  
Author(s):  
Cory Simon ◽  
carlo carraro

<div>In the two-balloon experiment, two rubber balloons are connected and allowed to exchange gas. Owing to the non-monotonic relationship between the radius of the balloon and the pressure of gas inside of it, the two-balloon system presents multi- and in-stabilities.</div><div><br></div><div>Herein, we consider a two-adsorbent system, where two different adsorbents are allowed to exchange gas. We show that, for rigid adsorbents, the thermodynamic equilibrium state is unique.</div><div><br></div><div>Then, we consider an adsorbent-balloon system, where an adsorbent exchanges gas with a rubber balloon. This system can exhibit multiple states at thermodynamic equilibrium-- two (meta)stable and one unstable. The size of the balloon, pressure of gas in the balloon, and partitioning of gas between the adsorbent and the balloon differ among the equilibrium states. Temperature changes and the addition/removal of gas into/from the adsorbent-balloon system can induce catastrophe bifurcations and show hysteresis. Furthermore, the adsorbent-balloon system exhibits a critical temperature where, when approached from below, the discrepancy of balloon size between the two (meta)stable states decreases and, beyond, bistability is impossible.</div><div><br></div><div>Practically, our findings preclude multiple partitions of adsorbed gas in rigid mixed-linker metal-organic frameworks and may inspire new soft actuator and sensor designs.</div>


2009 ◽  
Vol 94 (11) ◽  
pp. 113304 ◽  
Author(s):  
C. S. Lee ◽  
J. X. Tang ◽  
Y. C. Zhou ◽  
S. T. Lee

Author(s):  
K.M. Jones ◽  
M.M. Al-Jassim ◽  
J.M. Olson

The epitaxial growth of III-V semiconductors on Si for integrated optoelectronic applications is currently of great interest. GaP, with a lattice constant close to that of Si, is an attractive buffer between Si and, for example, GaAsP. In spite of the good lattice match, the growth of device quality GaP on Si is not without difficulty. The formation of antiphase domains, the difficulty in cleaning the Si substrates prior to growth, and the poor layer morphology are some of the problems encountered. In this work, the structural perfection of GaP layers was investigated as a function of several process variables including growth rate and temperature, and Si substrate orientation. The GaP layers were grown in an atmospheric pressure metal organic chemical vapour deposition (MOCVD) system using trimethylgallium and phosphine in H2. The Si substrates orientations used were (100), 2° off (100) towards (110), (111) and (211).


Author(s):  
J.L. Batstone

The development of growth techniques such as metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy during the last fifteen years has resulted in the growth of high quality epitaxial semiconductor thin films for the semiconductor device industry. The III-V and II-VI semiconductors exhibit a wide range of fundamental band gap energies, enabling the fabrication of sophisticated optoelectronic devices such as lasers and electroluminescent displays. However, the radiative efficiency of such devices is strongly affected by the presence of optically and electrically active defects within the epitaxial layer; thus an understanding of factors influencing the defect densities is required.Extended defects such as dislocations, twins, stacking faults and grain boundaries can occur during epitaxial growth to relieve the misfit strain that builds up. Such defects can nucleate either at surfaces or thin film/substrate interfaces and the growth and nucleation events can be determined by in situ transmission electron microscopy (TEM).


2021 ◽  
Author(s):  
Lars Öhrström ◽  
Francoise M. Amombo Noa

2020 ◽  
Vol 7 (1) ◽  
pp. 221-231
Author(s):  
Seong Won Hong ◽  
Ju Won Paik ◽  
Dongju Seo ◽  
Jae-Min Oh ◽  
Young Kyu Jeong ◽  
...  

We successfully demonstrate that the chemical bath deposition (CBD) method is a versatile method for synthesizing phase-pure and uniform MOFs by controlling their nucleation stages and pore structures.


2021 ◽  
Author(s):  
Jintong Liu ◽  
Jing Huang ◽  
Lei Zhang ◽  
Jianping Lei

We review the general principle of the design and functional modulation of nanoscaled MOF heterostructures, and biomedical applications in enhanced therapy.


Sign in / Sign up

Export Citation Format

Share Document