Thermomigration in Pb–Sn solder joints under joule heating during electric current stressing

2003 ◽  
Vol 82 (7) ◽  
pp. 1045-1047 ◽  
Author(s):  
Hua Ye ◽  
Cemal Basaran ◽  
Douglas Hopkins
Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Bo Wang ◽  
Wangyun Li ◽  
Kailin Pan

The shear performance and fracture behavior of microscale ball grid array structure Cu/Sn–3.0Ag–0.5Cu/Cu solder joints with increasing electric current density (from 1.0 × 103 to 6.0 × 103 A/cm2) at various test temperatures (25 °C, 55 °C, 85 °C, 115 °C, 145 °C, and 175 °C) were investigated systematically. Shear strength increases initially, then decreases with increasing current density at a test temperature of no more than 85 °C; the enhancement effect of current stressing on shear strength decreases and finally diminishes with increasing test temperatures. These changes are mainly due to the counteraction of the athermal effect of current stressing and Joule heating. After decoupling and quantifying the contribution of the athermal effect to the shear strength of solder joints, the results show that the influence of the athermal effect presents a transition from an enhancement state to a deterioration state with increasing current density, and the critical current density for the transition decreases with increasing test temperatures. Joule heating is always in a deterioration state on the shear strength of solder joints, which gradually becomes the dominant factor with increasing test temperatures and current density. In addition, the fracture location changes from the solder matrix to the interface between the solder matrix and the intermetallic compound (IMC) layer (the solder/IMC layer interface) with increasing current density, showing a ductile-to-brittle transition. The interfacial fracture is triggered by current crowding at the groove of the IMC layer and driven by mismatch strain at the solder/IMC layer interface, and the critical current density for the occurrence of interfacial fracture decreases with increasing test temperatures.


2010 ◽  
Vol 26 (8) ◽  
pp. 737-742 ◽  
Author(s):  
X.J. Wang ◽  
Q.L. Zeng ◽  
Q.S. Zhu ◽  
Z.G. Wang ◽  
J.K. Shang

2020 ◽  
Vol 54 ◽  
pp. 221-227
Author(s):  
Waluyo Adi Siswanto ◽  
M. Arun ◽  
Irina V. Krasnopevtseva ◽  
A. Surendar ◽  
Andino Maseleno

2019 ◽  
Vol 6 (10) ◽  
pp. 106302 ◽  
Author(s):  
Yufeng Jiao ◽  
Kittisak Jermsittiparsert ◽  
Aleksandr Yu Krasnopevtsev ◽  
Qahtan A Yousif ◽  
Mohammad Salmani

Sign in / Sign up

Export Citation Format

Share Document