Measurement of temperature distribution in SnAg3.5 flip-chip solder joints during current stressing using infrared microscopy

Author(s):  
Hsiang-Yao Hsiao ◽  
Chih Chen
2008 ◽  
Vol 104 (3) ◽  
pp. 033708 ◽  
Author(s):  
Hsiang-Yao Hsiao ◽  
S. W. Liang ◽  
Min-Feng Ku ◽  
Chih Chen ◽  
Da-Jeng Yao

2006 ◽  
Vol 35 (10) ◽  
pp. 1781-1786 ◽  
Author(s):  
C. M. Tsai ◽  
Yi-Shao Lai ◽  
Y. L. Lin ◽  
C. W. Chang ◽  
C. R. Kao

2010 ◽  
Vol 1249 ◽  
Author(s):  
Chih Chen ◽  
Yu Chun Liang ◽  
D. J. Yao

AbstractIn this study, the temperature map distribution in the Sn3.0Ag0.5Cu solder bump with Cu column under current stressing is directly examined using infrared microscopy. It is the radiance changes between the different materials of the surface that cause the unreasonable temperature map distribution. By coating a thin layer of black optical paint which is in order to eliminate the radiance changes, we got the corrected temperature map distribution. Under a current stress of 1.15 × 104 A/cm2 at 100℃C, the hot-spot temperature is 132.2℃ which surpasses the average Cu column temperature of 129.7℃C and the average solder bump temperature of 127.4 ℃. Thermomigration in solder may still occur under a large current stressing.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Yi-Shao Lai ◽  
Ying-Ta Chiu

This work presents electromigration reliability and patterns of Sn–3Ag–0.5Cu and Sn–3Ag–1.5Cu∕Sn–3Ag–0.5Cu composite flip-chip solder joints with Ti∕Ni(V)∕Cu under bump metallurgy (UBM), bonded on Au∕Ni∕Cu substrate pads. The solder joints were subjected to an average current density of 5kA∕cm2 under an ambient temperature of 150°C. Under the situation when electron charges flow from the UBM toward the substrate, Sn diffuses from the Cu–Ni–Sn intermetallic compound developed around the UBM toward the UBM and eventually causes the Ni(V) layer to deform. Electromigration reliability of Sn–3Ag–1.5Cu∕Sn–3Ag–0.5Cu composite flip-chip solder joints was found to be better than that of Sn–3Ag–0.5Cu solder joints. According to the morphological observations on cross-sectioned solder joints, a failure mechanism is proposed as follows. Since the deformation of the Ni(V) layer as a result of Sn diffusion toward the UBM is considered as the dominant failure, a greater Cu weight content in the solder joints would trap more Sn in the Sn–Cu interfacial reaction and would therefore retard the diffusion of Sn toward the UBM and hence enhance the electromigration reliability.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Yi-Shao Lai ◽  
Ying-Ta Chiu ◽  
Chiu-Wen Lee

Designed experiments were conducted in this paper to study the effect of Au/Ni/Cu or Cu substrate pad metallization on the electromigration reliability of 96.5Sn–3Ag–0.5Cu flip-chip solder joints with Ti/Ni(V)/Cu under bump metallurgy (UBM) under a current stressing condition with an average current density of around 5 kA/cm2 at an ambient temperature of 150°C. Cross-sectional observations on current-stressed solder joints indicate that although Cu metallization results in severe voiding compared with Au/Ni/Cu metallization on the substrate side of the solder joint, the dominant failure has been identified as UBM consumption, and test vehicles with Cu metallization exhibit better electromigration reliability than those with Au/Ni/Cu metallization. The stronger durability against current stressing for test vehicles with Cu metallization may attribute to the lower UBM consumption rate due to the continuous Cu diffusion toward UBM as a result of the concentration gradient. The consumption of UBM is faster for test vehicles with Au/Ni/Cu metallization because Cu diffusion from the substrate pad is retarded by the Ni barrier.


2006 ◽  
Vol 88 (2) ◽  
pp. 022110 ◽  
Author(s):  
S. H. Chiu ◽  
T. L. Shao ◽  
Chih Chen ◽  
D. J. Yao ◽  
C. Y. Hsu

Sign in / Sign up

Export Citation Format

Share Document