Room-temperature electrical conductivity studies of sulfur-modified microcrystalline diamond thin films

2003 ◽  
Vol 83 (3) ◽  
pp. 491-493 ◽  
Author(s):  
S. Gupta ◽  
B. R. Weiner ◽  
G. Morell
1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


1990 ◽  
Vol 206 ◽  
Author(s):  
A. Ramachandra ◽  
M. Vaziri ◽  
R.P. Andres

ABSTRACTGold clusters (diam. = 1.0 ± .5 nm) are prepared in a gas aggregation source (MECS), expanded into a vacuum chamber to form a neutral cluster beam, and deposited at low impact velocity on room temperature substrates. When several monolayers of these clusters are deposited on clean substrates (nitrocellulose, glass, mica, NaCl), they form smooth ultra-thin films. These cluster-assembled films appear to be similar in quality to those produced by the Takagi-Yamada ion cluster beam process. They exhibit finite electrical conductivity at thicknesses much smaller than is the case with atomically evaporated films. They are extremely uniform and smooth with a surface height that typically varies less than 1 nm across the entire film.


Open Physics ◽  
2005 ◽  
Vol 3 (1) ◽  
Author(s):  
Abraham Varghese ◽  
C. Menon

AbstractThin films of mixed of Copper Phthalocyanine (CuPc) and Nickel Phthalocyanine (NiPc) are deposited onto a pure glass substrate by a simultaneous thermal evaporation technique at room temperature. The material D.C. electrical conductivity of films at room temperature and also films annealed at 523 K has been investigated. The optical absorption and band gaps of the films are also measured. The results show that the electrical resistance is lower for the mixed films compared with the pure samples and also the optical band gap decreases for the mixed samples compared to the pure samples.


2005 ◽  
Vol 905 ◽  
Author(s):  
Elamurugu Elangovan ◽  
Antonio Marques ◽  
Ana Pimentel ◽  
Rodrigo Martins ◽  
Elvira Fortunato

AbstractMolybdenum doped indium oxide (IMO) thin films rf sputtered at room temperature were studied as a function of oxygen volume percentage (O2 vol. %) varied between 0 and 17.5. The as-deposited films were amorphous irrespective of O2 vol. %. The minimum transmittance (<10 %) of the films deposited without oxygen has been increased on introducing oxygen (3.5 O2 vol. %) to a maximum of 90 %. The optical band gap has been increased from 3.80 eV (without oxygen) to 3.92 eV (3.5 O2 vol. %). The films were highly resistive and the hall coefficients were detectable only for the films deposited without oxygen. In order to increase the electrical conductivity, the films were annealed in the range 100-500°C in open-air and N2/H2 gas for 1 hour. The annealed films become polycrystalline with enhanced electrical and optical properties. The effect of annealing conditions on these films will be presented and discussed in detail.


2005 ◽  
Vol 475-479 ◽  
pp. 1209-1212 ◽  
Author(s):  
Akihiko Ito ◽  
Hiroshi Masumoto ◽  
Takashi Goto

SrRuO3 (SRO) thin films were prepared by laser ablation. The optimum preparation condition of highly electrically conductive SRO thin films was investigated. The substrate temperature (Tsub) was changed from room temperature to 973 K, and the deposition atmosphere was at a high vacuum (P = 10-6 Pa) and in O2 at oxygen pressures (PO2) of 0.13 and 13 Pa. The films deposited at P = 10-6 Pa and PO2 = 0.13 Pa were amorphous structure. At Tsub > 573 K and PO2 = 13 Pa, well-crystallized pseudo-cubic SRO thin films with (110) orientation were obtained. With increasing Tsub, the conductivity of SRO films increased from 7.7×103 to 9.1×104 S·m-1. The epitaxially grown SRO films on (100) SrTiO3 substrates exhibited the highest conductivity of 1.8×105 S·m-1.


1997 ◽  
Vol 488 ◽  
Author(s):  
R. C Hyer ◽  
R. G. Pethe ◽  
T. Yogi ◽  
S. C. Sharma ◽  
J. Wang ◽  
...  

AbstractWe present results for the electrical conductivity (σ) of thin films of poly(benzo[1,2-b:4,5- b']dithiophene-4,8-diyl vinylene) (PBDV) and poly (dodecylthiophene) (PDDT) as a function of temperature in the range 15-295K. The polymers were doped with FeC13 and PF6 which resulted in electrical conductivities differing by two orders of magnitude at room temperature. We examine three sets of σ(T)-data by using the variable-range hopping (VRH) model that predicts a linear relationship between ln(T1/2σ) and T1/4. We observe a change in the slope of the ln(T1/2σ) vs T14 relationship in all three samples at low temperatures. We also analyze the temperature dependence of the resistivity of PBDV by using the thermal fluctuation-induced tunneling model.


Author(s):  
Mumtaz A. Dinno ◽  
Manuel Schwartz ◽  
Beverly Giammara

Capers and White made an extensive study of the growth of tellurium thin films deposited on different substrate materials but did not measure the electrical properties of the deposited films. Berryman studied the effects of film thickness, deposition rate, and substrate temperature on the electrical properties but there is no evidence that these results were correlated with structural studies. Dutton presented a method for growing large grains using a gold monolayer as nucleation sites and for these special films related electron transport properties with structure. The present study undertakes the determination of conductivity over a range of thicknesses extending from 350 Å to 2800 Å on a substrate initially at room temperature, for both annealed and nonannealed films. In addition, some work was done with quenched and heated substrates at 700 Å thickness.


1998 ◽  
Vol 73 (7) ◽  
pp. 981-983 ◽  
Author(s):  
Hideyuki Watanabe ◽  
Kazushi Hayashi ◽  
Daisuke Takeuchi ◽  
Sadanori Yamanaka ◽  
Hideyo Okushi ◽  
...  

2021 ◽  
Vol 1206 (1) ◽  
pp. 012028
Author(s):  
Sk Faruque Ahmed ◽  
Mohibul Khan ◽  
Nillohit Mukherjee

Abstract Silicon incorporated carbon nanotube (Si-CNTs) thin films was prepared by radio frequency plasma enhanced chemical vapor deposition technique. Tetraethyl orthosilicate solution was used for incorporation of silicon in CNTs thin films. Energy dispersive X-ray analysis shows that the silicon atomic percentage was varied from 0 % to 6.1 %. The chemical binding energies of carbon and silicon were analyzed from X-ray photoelectron spectroscopy data. The various peaks at ~531 eV, ~ 285 eV, ~155 eV and ~104 eV was observed in the XPS spectra due to the oxygen, carbon and silicon respectively. Surface morphologies of Si-CNTs thin films have been analyzed by field emission scanning electron microscopy, which revels that the length of the silicon incorporated carbon nanotubes ~500 nm and corresponding diameter ~80 nm. The room temperature electrical conductivity was increased whereas the activation energy was decreased with the increase of atomic percentage of silicon in Si-CNTs thin films. The room temperature electrical conductivity was increased from 4.3 × 103 to 7.1 × 104 S cm−1 as the silicon atomic percentage in Si-CNTs thin films increases from 0 to 6.1 % respectively.


Sign in / Sign up

Export Citation Format

Share Document