Electrical Conductivity of SrRuO3 Thin Films Prepared by Laser Ablation

2005 ◽  
Vol 475-479 ◽  
pp. 1209-1212 ◽  
Author(s):  
Akihiko Ito ◽  
Hiroshi Masumoto ◽  
Takashi Goto

SrRuO3 (SRO) thin films were prepared by laser ablation. The optimum preparation condition of highly electrically conductive SRO thin films was investigated. The substrate temperature (Tsub) was changed from room temperature to 973 K, and the deposition atmosphere was at a high vacuum (P = 10-6 Pa) and in O2 at oxygen pressures (PO2) of 0.13 and 13 Pa. The films deposited at P = 10-6 Pa and PO2 = 0.13 Pa were amorphous structure. At Tsub > 573 K and PO2 = 13 Pa, well-crystallized pseudo-cubic SRO thin films with (110) orientation were obtained. With increasing Tsub, the conductivity of SRO films increased from 7.7×103 to 9.1×104 S·m-1. The epitaxially grown SRO films on (100) SrTiO3 substrates exhibited the highest conductivity of 1.8×105 S·m-1.

2007 ◽  
Vol 336-338 ◽  
pp. 730-734 ◽  
Author(s):  
Hiroshi Masumoto ◽  
Akihiko Ito ◽  
Y. Kaneko ◽  
Takashi Goto

BaRuO3(BRO) and BaIrO3(BIO) thin films were prepared by laser ablation, and the effects of preparation conditions on the structure, morphology and electrical conductivity were investigated. BRO thin films deposited at oxygen partial pressure (PO2) = 13 Pa and substrate temperature (Tsub) < 573 K were amorphous. At Tsub = 573 K, the rhombohedral BRO thin films with (110) orientation were obtained. BRO thin films prepared at Tsub = 773 K and PO2= 13 Pa exhibited the resistivity of 5x10-6 m and showed metallic conduction. BIO thin films deposited at PO2= 40 Pa and Tsub < 623 K were amorphous. Tsub > 623 K, the BIO thin films crystallized into a 6H structure were obtained. The resistivity of the BIO films at PO2= 40 Pa decreased from 1.4x10-2 to 4x10-4 m with decreasing Tsub from 1073 to 573 K.


Author(s):  
Pamela F. Lloyd ◽  
Scott D. Walck

Pulsed laser deposition (PLD) is a novel technique for the deposition of tribological thin films. MoS2 is the archetypical solid lubricant material for aerospace applications. It provides a low coefficient of friction from cryogenic temperatures to about 350°C and can be used in ultra high vacuum environments. The TEM is ideally suited for studying the microstructural and tribo-chemical changes that occur during wear. The normal cross sectional TEM sample preparation method does not work well because the material’s lubricity causes the sandwich to separate. Walck et al. deposited MoS2 through a mesh mask which gave suitable results for as-deposited films, but the discontinuous nature of the film is unsuitable for wear-testing. To investigate wear-tested, room temperature (RT) PLD MoS2 films, the sample preparation technique of Heuer and Howitt was adapted.Two 300 run thick films were deposited on single crystal NaCl substrates. One was wear-tested on a ball-on-disk tribometer using a 30 gm load at 150 rpm for one minute, and subsequently coated with a heavy layer of evaporated gold.


1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


1995 ◽  
Vol 388 ◽  
Author(s):  
Yoshihisa Watanabe ◽  
Yoshikazu Nakamura ◽  
Shigekazu Hirayama ◽  
Yuusaku Naota

AbstractAluminum nitride (AlN) thin films have been synthesized by ion-beam assisted deposition method. Film deposition has been performed on the substrates of silicon single crystal, soda-lime glass and alumin A. the influence of the substrate roughness on the film roughness is studied. the substrate temperature has been kept at room temperature and 473K and the kinetic energy of the incident nitrogen ion beam and the deposition rate have been fixed to 0.5 keV and 0.07 nm/s, respectively. the microstructure of the synthesized films has been examined by X-ray diffraction (XRD) and the surface morphology has been observed by atomic force microscopy(AFM). IN the XRD patterns of films synthesized at both room temperature and 473K, the diffraction line indicating the alN (10*0) can be discerned and the broad peak composed of two lines indicating the a1N (00*2) and a1N (10*1) planes is also observed. aFM observations for 100 nm films reveal that (1) the surface of the films synthesized on the silicon single crystal and soda-lime glass substrates is uniform and smooth on the nanometer scale, (2) the average roughness of the films synthesized on the alumina substrate is similar to that of the substrate, suggesting the evaluation of the average roughness of the film itself is difficult in the case of the rough substrate, and (3) the average roughness increases with increasing the substrate temperature.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


In the present paper an account is given of experimental measurements on the electrical conductivity of thin films of mercury prepared by evaporative deposition in a high vacuum according to the technique described in previous papers (Lovell 1936; Appleyard and Lovell 1937). In a brief preliminary note (Appleyard 1937) we have pointed out that the results for mercury are very different from those for the alkali metals, and that in particular a considerable thickness of mercury must be deposited on the pyrex surface before conductivity begins. We have since confirmed and extended these observations, obtained accurate absolute values for the thickness of the films, investigated their stability, and made an extended study of their temperature coefficients after heat treatment. A comparison with the results of previous workers is given later.


Sign in / Sign up

Export Citation Format

Share Document