Temperature Dependence of the Electrical Conductivity of Poly(Benzo[1,2-b:4,5-b'] Dithiophene-4,8-Diyl Vinylene) and Poly(Dodecylthiophene)

1997 ◽  
Vol 488 ◽  
Author(s):  
R. C Hyer ◽  
R. G. Pethe ◽  
T. Yogi ◽  
S. C. Sharma ◽  
J. Wang ◽  
...  

AbstractWe present results for the electrical conductivity (σ) of thin films of poly(benzo[1,2-b:4,5- b']dithiophene-4,8-diyl vinylene) (PBDV) and poly (dodecylthiophene) (PDDT) as a function of temperature in the range 15-295K. The polymers were doped with FeC13 and PF6 which resulted in electrical conductivities differing by two orders of magnitude at room temperature. We examine three sets of σ(T)-data by using the variable-range hopping (VRH) model that predicts a linear relationship between ln(T1/2σ) and T1/4. We observe a change in the slope of the ln(T1/2σ) vs T14 relationship in all three samples at low temperatures. We also analyze the temperature dependence of the resistivity of PBDV by using the thermal fluctuation-induced tunneling model.

1990 ◽  
Vol 195 ◽  
Author(s):  
John R. Beamish ◽  
B.M. Patterson ◽  
K.M. Unruh

ABSTRACTWe have studied the electrical transport behavior of sputter deposited Nix(SiO2)100−x thin films between room temperature and 100 mK and, at selected temperatures, in applied magnetic fields up to 6 T. As the Ni concentration x is reduced, the resistivity increases systematically. At a Ni concentration (nominal) of about x–70 atomic percent (38 volume percent) the room temperature coefficient of resistivity changes sign. For Ni concentrations greater than 70 percent the resistance first decreases with temperature then increases logarithmically at, low temperatures. This increase becomes smaller and the resistivity minimum moves to progressively lower temperatures as the Ni concentration increases. In films with less than x–70 percent Ni, the resistivity has a temperature dependence of the form ρ(T)–ρo exp \(To/T)α] between room temperature and about 5 K. The exponent a is about 1/2 and To increases with decreasing Ni content. Below 1 K, however, the resistivity increases much less rapidly, with a temperature dependence independent of Ni concentration. In all films the magnetoresistance is small and negative.


1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


2003 ◽  
Vol 101 (1-3) ◽  
pp. 334-337 ◽  
Author(s):  
M. Theodoropoulou ◽  
C.A. Krontiras ◽  
N. Xanthopoulos ◽  
S.N. Georga ◽  
M.N. Pisanias ◽  
...  

2016 ◽  
Vol 701 ◽  
pp. 23-27 ◽  
Author(s):  
Mohd Zuhri Shaiful Azni ◽  
Ho Kee Tan ◽  
Pei Ling Low ◽  
Nisha Kumari Devaraj ◽  
Boon Hoong Ong ◽  
...  

α-Fe2O3 thermoelectric thin films were electrodeposited onto copper substrates using chloride-based electrolytes by means of potentiostatic electrodeposition. The influence of several electrodeposition parameters on the surface morphology, elemental composition and electrical conductivity of the deposited films was studied and analyzed. The deposits formed porous, wire-like morphology, with the smallest width measured to be ~60 nm. The wires tend to aggregate to form clusters, in addition to multi-layered growth of the wires. Between the parameters studied, electrolyte concentration and deposition time parameters have higher influences on the electrical conductivity of the deposited films, with the increment up to two fold higher. Deposition potential parameter offered the lowest capability to improve on the electrical conductivity in addition to the non-uniform distribution of the measured electrical conductivities. The tunable electrical conductivity is favorable for improving the performance of α-Fe2O3 films for thermoelectric applications.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 382-385 ◽  
Author(s):  
J. Kasprzak ◽  
J. Lus ◽  
J. Pietrzak

The 63Cu and 65Cu NQR transitions in powder samples of cuprous oxide have been investigated from 77 to 500 K and at room temperature after annealing up to 1100 K Significant differences in T1 , NQR linewidth Δv, and their temperature dependences were found among the samples prepared in different ways. For C u20 samples obtained in low temperatures (below 380 K), the temperature dependence of T1 below 380 K is o f activation character with Ea = 0.07 eV. These results are interpreted in terms of an electron hopping mechanism. Thermal processing of these samples permits to obtain irreversible electronic state and then the spectroscopic parameters are the same as for the samples obtained in high temperatures (above 1320 K).


1990 ◽  
Vol 195 ◽  
Author(s):  
Steven M. Anlage ◽  
Brian W. Langley ◽  
Jurgen Halbritter ◽  
Chang-Beom Eom ◽  
Neil Switz ◽  
...  

ABSTRACTThe microstrip resonator technique has been applied to study the temperature dependence of the magnetic penetration depth in high quality YBa2Cu3O7−δ thin films. The temperature dependence at low temperatures comes out directly from measured data, with no assumptions about transmission line geometry, dielectric properties, or a model for the temperature dependence of the penetration depth. One can interpret the data in terms of either an exponential decay of λ(T) at low temperatures or as a power law decay. The energy gaps obtained from the exponential decay at low temperature are found to be significantly smaller than weak coupled BCS theory and power-law exponents are in the range of 1.3 to 3.2. These results will be discussed in terms of microscopic theories and the possibility that materials properties dominate the measurement.


1990 ◽  
Vol 206 ◽  
Author(s):  
A. Ramachandra ◽  
M. Vaziri ◽  
R.P. Andres

ABSTRACTGold clusters (diam. = 1.0 ± .5 nm) are prepared in a gas aggregation source (MECS), expanded into a vacuum chamber to form a neutral cluster beam, and deposited at low impact velocity on room temperature substrates. When several monolayers of these clusters are deposited on clean substrates (nitrocellulose, glass, mica, NaCl), they form smooth ultra-thin films. These cluster-assembled films appear to be similar in quality to those produced by the Takagi-Yamada ion cluster beam process. They exhibit finite electrical conductivity at thicknesses much smaller than is the case with atomically evaporated films. They are extremely uniform and smooth with a surface height that typically varies less than 1 nm across the entire film.


1983 ◽  
Vol 25 ◽  
Author(s):  
J. C. Hensel ◽  
R. T. Tung ◽  
J. M. Poate ◽  
F. C. Unterwald ◽  
D. C. Jacobson

ABSTRACTTransport studies have been performed on thin films of CoSi 2 and NiSis2 in the temperature range 1 to 300 K. The conductivities are metallic with essentially the same temperature dependence; however, the residual resistivities are markedly different even though the two silicides are structurally similar (the room temperature resistivity of NiSi2 being at least twice that of CoSi2 of 15 μΩ cm). The difference is attributed to intrinsic defects in NiSi2. This defect has been simulated by ion bombardment of the film where it is also shown that Matthiesen's rule is obeyed over a remarkable range of bombardment doses.


Open Physics ◽  
2005 ◽  
Vol 3 (1) ◽  
Author(s):  
Abraham Varghese ◽  
C. Menon

AbstractThin films of mixed of Copper Phthalocyanine (CuPc) and Nickel Phthalocyanine (NiPc) are deposited onto a pure glass substrate by a simultaneous thermal evaporation technique at room temperature. The material D.C. electrical conductivity of films at room temperature and also films annealed at 523 K has been investigated. The optical absorption and band gaps of the films are also measured. The results show that the electrical resistance is lower for the mixed films compared with the pure samples and also the optical band gap decreases for the mixed samples compared to the pure samples.


Sign in / Sign up

Export Citation Format

Share Document