Compatibility of non-generic supersymmetries and geometric duality for a subclass of generalized pp-wave metrics

2004 ◽  
Author(s):  
D. Baleanu
Keyword(s):  
Pp Wave ◽  
2003 ◽  
Vol 669 (1-2) ◽  
pp. 78-102 ◽  
Author(s):  
Hyeonjoon Shin ◽  
Katsuyuki Sugiyama ◽  
Kentaroh Yoshida

2004 ◽  
Vol 598 (1-2) ◽  
pp. 121-131 ◽  
Author(s):  
Daniel L. Nedel ◽  
M.C.B. Abdalla ◽  
A.L. Gadelha
Keyword(s):  

2003 ◽  
Vol 566 (3-4) ◽  
pp. 240-247 ◽  
Author(s):  
Chong-Sun Chu ◽  
Konstantinos Kyritsis
Keyword(s):  

2003 ◽  
Vol 110 (5) ◽  
pp. 1021-1035
Author(s):  
K. Ideguchi ◽  
Y. Imamura
Keyword(s):  

2007 ◽  
Vol 22 (13) ◽  
pp. 915-930 ◽  
Author(s):  
IAN SWANSON

Marginal β deformations of [Formula: see text] super-Yang–Mills theory are known to correspond to a certain class of deformations of the S5 background subspace of type IIB string theory in AdS5×S5. An analogous set of deformations of the AdS5 subspace is reviewed here. String energy spectra computed in the near-pp-wave limit of these backgrounds match predictions encoded by discrete, asymptotic Bethe equations, suggesting that the twisted string theory is classically integrable in this regime. These Bethe equations can be derived algorithmically by relying on the existence of Lax representations, and on the Riemann–Hilbert interpretation of the thermodynamic Bethe ansatz. This letter is a review of a seminar given at the Institute for Advanced Study, based on research completed in collaboration with McLoughlin.


Geophysics ◽  
2021 ◽  
pp. 1-101
Author(s):  
Kun Li ◽  
Xingyao Yin ◽  
Zhaoyun Zong ◽  
Dario Grana

The estimation of petrophysical and fluid-filling properties of subsurface reservoirs from seismic data is a crucial component of reservoir characterization. Seismic amplitude variation with offset (AVO) inversion driven by rock physics is an effective approach to characterize reservoir properties. Generally, PP-wave reflection coefficients, elastic moduli and petrophysical parameters are nonlinearly coupled, especially in the multiple type pore-space reservoirs, which makes seismic AVO petrophysics inversion ill-posed. We propose a new approach that combines Biot-Gassmann’s poro-elasticity theory with Russell’s linear AVO approximation, to estimate the reservoir properties including elastic moduli and petrophysical parameters based on multi-trace probabilistic AVO inversion algorithm. We first derive a novel PP-wave reflection coefficient formulation in terms of porosity, stiff-pore volume fraction, rock matrix shear modulus, and fluid bulk modulus to incorporate the effect of pore structures on elastic moduli by considering the soft and stiff pores with different aspect ratios in sandstone reservoirs. Through the analysis of the four types of PP-wave reflection coefficients, the approximation accuracy and inversion feasibility of the derived formulation are verified. The proposed stochastic inversion method aims to predict the posterior probability density function in a Bayesian setting according to a prior Laplace distribution with vertical correlation and prior Gaussian distribution with lateral correlation of model parameters. A Metropolis-Hastings stochastic sampling algorithm with multiple Markov chains is developed to simulate the posterior models of porosity, stiff-pore volume fraction, rock-matrix shear modulus, and fluid bulk modulus from seismic AVO gathers. The applicability and validity of the proposed inversion method is illustrated with synthetic examples and a real data application.


2021 ◽  
Vol 40 (4) ◽  
pp. 267-276
Author(s):  
Peter Mesdag ◽  
Leonardo Quevedo ◽  
Cătălin Tănase

Exploration and development of unconventional reservoirs, where fractures and in-situ stresses play a key role, call for improved characterization workflows. Here, we expand on a previously proposed method that makes use of standard isotropic modeling and inversion techniques in anisotropic media. Based on approximations for PP-wave reflection coefficients in orthorhombic media, we build a set of transforms that map the isotropic elastic parameters used in prestack inversion into effective anisotropic elastic parameters. When used in isotropic forward modeling and inversion, these effective parameters accurately mimic the anisotropic reflectivity behavior of the seismic data, thus closing the loop between well-log data and seismic inversion results in the anisotropic case. We show that modeling and inversion of orthorhombic anisotropic media can be achieved by superimposing effective elastic parameters describing the behavior of a horizontally stratified medium and a set of parallel vertical fractures. The process of sequential forward modeling and postinversion analysis is exemplified using synthetic data.


2006 ◽  
Vol 639 (3-4) ◽  
pp. 383-388 ◽  
Author(s):  
A.L. Gadelha ◽  
Dáfni Z. Marchioro ◽  
Daniel L. Nedel
Keyword(s):  

2002 ◽  
Vol 2002 (10) ◽  
pp. 007-007 ◽  
Author(s):  
Sudarshan Fernando ◽  
Murat Günaydin ◽  
Oleksandr Pavlyk
Keyword(s):  

2016 ◽  
Vol 25 (04) ◽  
pp. 1650048 ◽  
Author(s):  
Timur Yu. Alpin ◽  
Alexander B. Balakin

We consider a pp-wave symmetric model in the framework of the Einstein–Maxwell-aether-axion theory. Exact solutions to the equations of axion electrodynamics are obtained for the model, in which pseudoscalar, electric and magnetic fields were constant before the arrival of a gravitational pp-wave. We show that dynamo-optical interactions, i.e. couplings of electromagnetic field to a dynamic unit vector field, attributed to the velocity of a cosmic substratum (aether, vacuum, dark fluid[Formula: see text]), provide the response of axionically active electrodynamic system to display anomalous behavior.


Sign in / Sign up

Export Citation Format

Share Document