scholarly journals The Einstein–Maxwell-aether-axion theory: Dynamo-optical anomaly in the electromagnetic response

2016 ◽  
Vol 25 (04) ◽  
pp. 1650048 ◽  
Author(s):  
Timur Yu. Alpin ◽  
Alexander B. Balakin

We consider a pp-wave symmetric model in the framework of the Einstein–Maxwell-aether-axion theory. Exact solutions to the equations of axion electrodynamics are obtained for the model, in which pseudoscalar, electric and magnetic fields were constant before the arrival of a gravitational pp-wave. We show that dynamo-optical interactions, i.e. couplings of electromagnetic field to a dynamic unit vector field, attributed to the velocity of a cosmic substratum (aether, vacuum, dark fluid[Formula: see text]), provide the response of axionically active electrodynamic system to display anomalous behavior.

2018 ◽  
Vol 33 (09) ◽  
pp. 1850050 ◽  
Author(s):  
Alexander B. Balakin

The extended Einstein–Maxwell-aether-axion model describes internal interactions inside the system, which contains gravitational, electromagnetic fields, the dynamic unit vector field describing the velocity of an aether, and the pseudoscalar field associated with the axionic dark matter. The specific feature of this model is that the axion field controls the dynamics of the aether through the guiding functions incorporated into Jacobson’s constitutive tensor. Depending on the state of the axion field, these guiding functions can control and switch on or switch off the influence of acceleration, shear, vorticity and expansion of the aether flow on the state of physical system as a whole. We obtain new exact solutions, which possess the pp-wave symmetry, and indicate them by the term pp-wave aether modes in contrast to the pure pp-waves, which cannot propagate in this field conglomerate. These exact solutions describe a specific dynamic state of the pseudoscalar field, which corresponds to one of the minima of the axion potential and switches off the influence of shear and expansion of the aether flow; the model does not impose restrictions on Jacobson’s coupling constants and on the axion mass. Properties of these new exact solutions are discussed.


Author(s):  
Carlos A. R. Herdeiro ◽  
João M. S. Oliveira ◽  
Eugen Radu

AbstractRecently, no-go theorems for the existence of solitonic solutions in Einstein–Maxwell-scalar (EMS) models have been established (Herdeiro and Oliveira in Class Quantum Gravity 36(10):105015, 2019). Here we discuss how these theorems can be circumvented by a specific class of non-minimal coupling functions between a real, canonical scalar field and the electromagnetic field. When the non-minimal coupling function diverges in a specific way near the location of a point charge, it regularises all physical quantities yielding an everywhere regular, localised lump of energy. Such solutions are possible even in flat spacetime Maxwell-scalar models, wherein the model is fully integrable in the spherical sector, and exact solutions can be obtained, yielding an explicit mechanism to de-singularise the Coulomb field. Considering their gravitational backreaction, the corresponding (numerical) EMS solitons provide a simple example of self-gravitating, localised energy lumps.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950071
Author(s):  
Susan C. Brooks ◽  
Oguz Durumeric ◽  
Jonathan Simon

A ribbon is a smooth mapping (possibly self-intersecting) of an annulus [Formula: see text] in 3-space having constant width [Formula: see text]. Given a regular parametrization [Formula: see text], and a smooth unit vector field [Formula: see text] based along [Formula: see text], for a knot [Formula: see text], we may define a ribbon of width [Formula: see text] associated to [Formula: see text] and [Formula: see text] as the set of all points [Formula: see text], [Formula: see text]. For large [Formula: see text], ribbons, and their outer edge curves, may have self-intersections. In this paper, we analyze how the knot type of the outer ribbon edge [Formula: see text] relates to that of the original knot [Formula: see text]. Generically, as [Formula: see text], there is an eventual constant knot type. This eventual knot type is one of only finitely many possibilities which depend just on the vector field [Formula: see text]. The particular knot type within the finite set depends on the parametrized curves [Formula: see text], [Formula: see text], and their interactions. We demonstrate a way to control the curves and their parametrizations so that given two knot types [Formula: see text] and [Formula: see text], we can find a smooth ribbon of constant width connecting curves of these two knot types.


2011 ◽  
Vol 90-93 ◽  
pp. 37-40 ◽  
Author(s):  
Lu Bo Meng ◽  
Tian Bin Li ◽  
Zheng Duan

To investigate the transient electromagnetic method of response characteristics in the tunnel geological prediction, the finite element numerical simulation of unfavorable geological body of different location, different resistivity sizes, different shapes, and different volume size were carried out by ANSYS finite element software. The results show that secondary electromagnetic field of different location of unfavorable geological body have same decay rate, when detection distance from 30m to 70m, transient electromagnetic responses are strongest, followed distance from 10m to 30m and from 70m to 90m. The shape, volume and resistivity of unfavorable geological body have strong influence on transient electromagnetic response, unfavorable geological body more sleek, the greater the volume and the smaller the resistivity of unfavorable geological body, the secondary electromagnetic field decay slower.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 513 ◽  
Author(s):  
Arbab Arbab ◽  
Mudhahir Al Ajmi

A quaternionic commutator bracket for position and momentum shows that the quaternionic wave function, viz. ψ ˜ = ( i c ψ 0 , ψ → ) , represents a state of a particle with orbital angular momentum, L = 3 ℏ , resulting from the internal structure of the particle. This angular momentum can be attributed to spin of the particle. The vector ψ → , points in an opposite direction of L → . When a charged particle is placed in an electromagnetic field, the interaction energy reveals that the magnetic moments interact with the electric and magnetic fields giving rise to terms similar to Aharonov–Bohm and Aharonov–Casher effects.


1970 ◽  
Vol 48 (16) ◽  
pp. 1935-1937 ◽  
Author(s):  
Lui Lam

Exact solutions of a Dirac electron in constant crossed electric and magnetic fields are found and given explicitly. The case of Klein–Gordon particles is shown to be a special case of ours.


Geophysics ◽  
1972 ◽  
Vol 37 (2) ◽  
pp. 337-350 ◽  
Author(s):  
Richard G. Geyer

Theoretical solutions for the electromagnetic response of a dipping interface in the field of normally incident plane waves are given in the form of inverse Lebedev‐Kontorovich transforms. When the lateral resistivity contrast becomes very large, the resulting integral solutions simplify considerably and allow ready numerical evaluation. The amplitude response of the vertical magnetic field seems most diagnostic of the structural attitude of sloping interfaces, even though the vertical magnetic field phase appears relatively insensitive to dip changes compared to horizontal electric field phase. The disturbance in the homogeneity of the field caused by the presence of an inclined contact is postulated to be due to cylindrically diffused waves generated by the dipping interface and propagating along the earth’s surface. It would then seem that formulation of plane‐wave impedances from orthogonal components of the surface electric and magnetic fields would only be applicable at distances from the interface which are large relative to a skin depth in either layer. The results presented here should prove to be useful in detecting and defining sloping interfaces or in avoiding their effects.


Sign in / Sign up

Export Citation Format

Share Document