Charge trapping properties at silicon nitride/silicon oxide interface studied by variable-temperature electrostatic force microscopy

2006 ◽  
Vol 100 (2) ◽  
pp. 023711 ◽  
Author(s):  
S.-D. Tzeng ◽  
S. Gwo
2018 ◽  
Vol 4 (2) ◽  
pp. 77-85
Author(s):  
Deepak Bhatia ◽  
Sandipta Roy ◽  
S. Nawaz ◽  
R.S. Meena ◽  
V.R. Palkar

In this paper, we report the charge trapping phenomena in zinc oxide (n-ZnO) and Bi0.7Dy0.3FeO3 (BDFO)/ZnO thin films deposited on p-type <100> conducting Si substrate. The significant change in contrast above the protrusions of ZnO verifies the possibility of heavy accumulation of injected holes in there. The ZnO and BDFO/ZnO films were characterized by the electrostatic force microscopy (EFM) to understand the phase dependence phenomenon on the bias supporting electron tunnelling. The EFM has an important role in the analysis of electrical transport mechanism characterization and electric charge distribution of local surface in nanoscale devices. It was observed that in BDFO/ZnO, the contrast of EFM images remains constant with the bias switching and that primarily indicates availability of trap sites to host electrons. The change in contrast over the protrusions of ZnO suggests that mobility of the electrical charge carriers may be through the grain boundary. The formation of these hole-trapped sites may be assumed by bond breaking phenomenon.


2020 ◽  
Vol 280 (3) ◽  
pp. 252-269
Author(s):  
C. ALBONETTI ◽  
S. CHIODINI ◽  
P. ANNIBALE ◽  
P. STOLIAR ◽  
R. V. MARTINEZ ◽  
...  

2019 ◽  
Vol 10 ◽  
pp. 617-633 ◽  
Author(s):  
Aaron Mascaro ◽  
Yoichi Miyahara ◽  
Tyler Enright ◽  
Omur E Dagdeviren ◽  
Peter Grütter

Recently, there have been a number of variations of electrostatic force microscopy (EFM) that allow for the measurement of time-varying forces arising from phenomena such as ion transport in battery materials or charge separation in photovoltaic systems. These forces reveal information about dynamic processes happening over nanometer length scales due to the nanometer-sized probe tips used in atomic force microscopy. Here, we review in detail several time-resolved EFM techniques based on non-contact atomic force microscopy, elaborating on their specific limitations and challenges. We also introduce a new experimental technique that can resolve time-varying signals well below the oscillation period of the cantilever and compare and contrast it with those previously established.


2011 ◽  
Vol 111 (8) ◽  
pp. 1366-1369 ◽  
Author(s):  
G.A. Schwartz ◽  
C. Riedel ◽  
R. Arinero ◽  
Ph. Tordjeman ◽  
A. Alegría ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document