Picture frame shear tests on woven textile composite reinforcements with controlled pretension

Author(s):  
An Willems ◽  
Stepan V. Lomov ◽  
Ignaas Verpoest ◽  
Dirk Vandepitte
2021 ◽  
pp. 152808372110154
Author(s):  
Benedikt Lux ◽  
Julian Fial ◽  
Olivia Schmidt ◽  
Stefan Carosella ◽  
Peter Middendorf ◽  
...  

Our research aims to develop a shear forming envelope for the preforming of textiles, a critical step in the manufacture of fibre-reinforced composite materials. This paper demonstrates the progress towards this aim by conducting picture frame tests to empirically determine the locking angle of non-crimp fabrics with different fibre orientations. While conventional shear tests typically utilise woven textile samples with orthogonal fibre directions of 0°/90°, the investigation of non-crimp fabrics, especially with non-standard fibre orientations, is less common. As a result, there is little knowledge about the shear deformation behaviour of these fabric types, despite their relevance to the aerospace industry. In this study, the shear locking angles of various carbon fibre non-crimp fabrics are investigated, gradually reducing the relative fibre angles of the textile materials from ±45° to ±22.5°. Previously, it was observed that unidirectional 0° reinforcement layers induce draping defects when forming multiaxial non-crimp fabric stacks into curved aerospace stiffeners. Their substitution by reinforcements with smaller cross-ply angles such as ±30° resulted in better formability and reduced defects. It is however unclear, how the shear locking angle decreases with more acute cross-ply angles. Here, we report for the first time a correlation between the fibre orientation of the non-crimp fabric and its shear locking angle. The resulting shear forming envelope provides composite design and manufacturing guidance for an enhanced utilisation of the advantageous but anisotropic properties of carbon fibre textiles.


2007 ◽  
Vol 16 (4) ◽  
pp. 096369350701600 ◽  
Author(s):  
P. Boisse ◽  
N. Hamila ◽  
F. Helenon ◽  
Y. Aimene ◽  
T. Mabrouki

The textile reinforcements used for composites are multiscale materials. A fabric is made of woven yarns themselves composed of thousand of juxtaposed fibres. For the simulation of the draping of these textile reinforcements several families of approaches can be distinguished in function of the level of the modelling. The continuous approaches consider the fabric as a continuum with a specific behaviour. The discrete approaches use models of some components such as the yarns and sometimes the fibres. Different approaches used for the simulation of woven reinforcement forming are investigated in the present paper. Among them, an approach based on semi discrete finite elements made of woven unit cells under biaxial tension and in-plane shear is detailed. The advantage and inconvenient of the different approaches are compared.


2014 ◽  
Vol 14 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Oliver Döbrich ◽  
Thomas Gereke ◽  
Chokri Cherif

Abstract Numerical simulation tools are increasingly used for developing novel composites and composite reinforcements. The aim of this paper is the application of digital elements for the simulation of the mechanical behaviour of textile reinforcement structures by means of a finite element analysis. The beneficial computational cost of these elements makes them applicable for the use in large models with a solution on near micro-scale. The representation of multifilament yarn models by a large number of element-chains is highly suitable for the analysis of structural and geometrical effects. In this paper, a unit cell generating method for technical reinforcement textiles, using digital elements for the discretization, is introduced.


2016 ◽  
Vol 122 ◽  
pp. 122-129 ◽  
Author(s):  
Andy Vanaerschot ◽  
Brian N. Cox ◽  
Stepan V. Lomov ◽  
Dirk Vandepitte

Sign in / Sign up

Export Citation Format

Share Document