Impact evaluation of Kevlar-based angle-interlock woven textile composite structures

2013 ◽  
Vol 32 (12) ◽  
pp. 925-932 ◽  
Author(s):  
Bilal Zahid ◽  
Xiaogang Chen
2019 ◽  
Vol 50 (2) ◽  
pp. 133-148 ◽  
Author(s):  
Senthil Kumar ◽  
S Balachander

Process optimization is the key task of any engineering application to maximize the desirable output by optimizing the range of process parameters. In this research work, jute composites were fabricated by the hand lay-up method with the aim of optimizing the process parameter such as yarn linear density, fabric areal density and fabric laying angle on the mechanical properties of the textile composite structures using the Taguchi L9 orthogonal matrix. The plain-woven and twill-woven fabrics of Jute fabrics were produced through specialized handloom machine and used as preform for composite production. Epoxy resin was used as the matrix component. Signal-to-noise ratio ratio, analysis of variance and experimental verification of results were analysed. The results showed that fabric laying angle played major role to achieve high mechanical properties of composites and twill-woven structural reinforcement yields higher mechanical properties. Subsequent to this optimal process, parameters have been arrived for all the composites, and finally it was verified through the experimental results.


2021 ◽  
Vol 69 (2) ◽  
pp. 21-29
Author(s):  
Silvana Zhezhova ◽  
Sonja Jordeva ◽  
Sashka Golomeova-Longurova ◽  
Stojanche Jovanov

Medical textile is an extremely important subcategory of technical textile because it is covering a wide range of products. The term medical textile itself covers all types of textile materials that are used in the healthcare system for various purposes. Medical textile is also known as health textile and is one of the fastest growing sectors in the technical textile market. The growth rate of technical textiles in this area is due to constant improvements and innovations in both areas: textile technologies and medical procedures. Textile structures used in this field include yarns, woven, knitted and non-woven textile materials as well as composite materials reinforced with textiles. The number of applications is large and diverse, from simple surgical sutures to complex composite structures for bone and tissue replacement, hygiene materials, protective products used in operating rooms and in the process of postoperative wound treatment. The purpose of this paper is to emphasize the importance of technical textiles for medical, surgical and healtcare applications, to indicate which textiles are currently used in this field.


2015 ◽  
Vol 1134 ◽  
pp. 147-153 ◽  
Author(s):  
Mohamad Faizul Yahya ◽  
Faris Mohd Zulkifli Nasrun ◽  
Suzaini A. Ghani ◽  
Mohd Rozi Ahmad

In recent years, textile composite are widely utilized as structural components in the area of aerospace, civil engineering, protective armour and automotive applications. Textiles structures become increasingly significant for composites application due to strength to weight factor. [1-4]. Various textile materials are extensively used such as fibres, yarns and fabrics. Commonly, textile composite structures are characterized according to the textile preform architecture either it is a conventional 2D laminated structure or 3D textile structural laminated composite [2]. Comparative studies between both types have suggested that 3D textile structure exhibit superior mechanical performance in tensile strength, impact resistance, flexural, delamination resistance, high fracture tolerance [1, 5, 6].


2014 ◽  
Vol 81 (8) ◽  
Author(s):  
Wu Xu ◽  
Anthony M. Waas

A shell element for analysis of textile composite structures is proposed in this paper. Based on the embedded element method and solid shell concept, the architecture, geometry, and material properties of a repeat unit cell (RUC) of textile composite are embedded in a single shell finite element. Flat and curved textile composite structures are used to apply and verify the present shell element. The deformation and natural frequency obtained by the present shell element are compared against those computed from full three-dimensional finite element analyses. It is shown that the proposed shell element is efficient, simple, and reliable for textile composite structural analysis.


Sign in / Sign up

Export Citation Format

Share Document