Electron‐beam induced current characterization of back‐surface field solar cells using a chopped scanning electron microscope beam

1984 ◽  
Vol 55 (2) ◽  
pp. 555-559 ◽  
Author(s):  
Keung L. Luke ◽  
Li‐Jen Cheng
Nanoscale ◽  
2017 ◽  
Vol 9 (42) ◽  
pp. 16349-16356 ◽  
Author(s):  
Brett B. Lewis ◽  
Brittnee A. Mound ◽  
Bernadeta Srijanto ◽  
Jason D. Fowlkes ◽  
George M. Pharr ◽  
...  

Nanomechanical measurements of platinum–carbon 3D nanoscale architectures grown via focused electron beam induced deposition (FEBID) were performed using a nanoindentation system in a scanning electron microscope (SEM) for simultaneous in situ imaging.


2002 ◽  
Vol 743 ◽  
Author(s):  
Kristin L. Bunker ◽  
Juan Carlos Gonzalez ◽  
Dale Batchelor ◽  
Terrence J. Stark ◽  
Phillip E. Russell

ABSTRACTElectron Beam Induced Current (EBIC) is a Scanning Electron Microscope (SEM)-based technique that can provide information on the electrical properties of semiconductor materials and devices. This work focuses on the design and implemenation of an EBIC system in a dedicated Scanning Transmission Electron Microscope (STEM). The STEM-EBIC technique was used in the characterization of an Indium Gallium Nitride (InGaN) quantum well Light Emitting Diode (LED). The conventional “H-bar” Transmission Electron Microscopy (TEM) sample preparation method using Focused Ion Beam Micromachining (FIBM) was adapted to create an electron-transparent membrane approximately 300 nm thick on the sample while preserving the electrical activity of the device. A STEM-EBIC sample holder with two insulated electrical feedthroughs making contact to the thinned LED was designed and custom made for these experiments. The simultaneous collection of Z-contrast images, EBIC images, and In and Al elemental images allowed for the determination of the p-n junction location, AlGaN and GaN barrier layers, and the thin InGaN quantum well layer within the device. The relative position of the p-n junction with respect to the thin InGaN quantum well was found to be (19 ± 3) nm from the center of the InGaN quantum well.


Author(s):  
R. F. Schneidmiller ◽  
W. F. Thrower ◽  
C. Ang

Solid state materials in the form of thin films have found increasing structural and electronic applications. Among the multitude of thin film deposition techniques, the radio frequency induced plasma sputtering has gained considerable utilization in recent years through advances in equipment design and process improvement, as well as the discovery of the versatility of the process to control film properties. In our laboratory we have used the scanning electron microscope extensively in the direct and indirect characterization of sputtered films for correlation with their physical and electrical properties.Scanning electron microscopy is a powerful tool for the examination of surfaces of solids and for the failure analysis of structural components and microelectronic devices.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Sign in / Sign up

Export Citation Format

Share Document