Deep‐level transient spectroscopy and photoluminescence studies of electron‐irradiated Czochralski silicon

1986 ◽  
Vol 60 (6) ◽  
pp. 1974-1979 ◽  
Author(s):  
O. O. Awadelkarim ◽  
H. Weman ◽  
B. G. Svensson ◽  
J. L. Lindström
2009 ◽  
Vol 58 (3) ◽  
pp. 1987
Author(s):  
Li Bing ◽  
Liu Cai ◽  
Feng Liang-Huan ◽  
Zhang Jing-Quan ◽  
Zheng Jia-Gui ◽  
...  

2005 ◽  
Vol 108-109 ◽  
pp. 373-378 ◽  
Author(s):  
Marie-Laure David ◽  
Eddy Simoen ◽  
Cor Claeys ◽  
V.B. Neimash ◽  
M. Kras'ko ◽  
...  

Different group IV impurities (Pb, C, and Sn) have been introduced in the melt during the growth of n-type Czochralski silicon. The samples have been irradiated with 1 MeV electrons to a fluence of 4x1015cm-2. The irradiation-induced defects have been studied by Deep Level Transient Spectroscopy (DLTS). It is shown that the formation of one of the irradiation-induced deep level is avoided by the Pb-doping. This level is located at 0.37 eV from the conduction band edge (EC) and shows an apparent capture cross-section of 7x10-15cm2. In addition, another irradiation induced deep level located at EC - 0.32 eV has been studied in more details.


Author(s):  
Taro Kuwano ◽  
Ryoji Katsube ◽  
Steve Johnston ◽  
Adele Tamboli ◽  
Yoshitaro Nose

Abstract ZnSnP2, an emerging inorganic material for solar cells, was characterized by deep level transient spectroscopy (DLTS) and photoluminescence (PL). Acceptor- and donor-like traps with shallow energy levels were detected by DLTS analysis. The previous study based on first-principle calculation also suggested such traps were due to antisite defects of Zn and Sn. PL measurements also revealed sub-gap transitions related to these trap levels. Additionally, DLTS found a trap with deep level in ZnSnP2. A short lifetime of minority carrier in previous work might be due to such trap, coming from phosphorus vacancies and/or zinc interstitials suggested by first-principle study.


1991 ◽  
Vol 223 ◽  
Author(s):  
A. Vaseashta ◽  
L. C. Burton

ABSTRACTKinetics of persistent photoconductivity, photoquenching, and thermal and optical recovery observed in low energy Ar+ bombarded on (100) GaAs surfaces have been investigated. Rate and transport equations for these processes were derived and simulated employing transport parameters, trap locations and densities determined by deep level transient spectroscopy. Excellent correlation was obtained between the results of preliminary simulation and the experimentally observed values. The exponential decay of persistent photoconductivity response curve was determined to be due to metastable electron traps with longer lifetime and is consistent with an earlier proposed model.


2002 ◽  
Vol 719 ◽  
Author(s):  
Masashi Kato ◽  
Masaya Ichimura ◽  
Eisuke Arai ◽  
Shigehiro Nishino

AbstractEpitaxial layers of 4H-SiC are grown on (0001) substrates inclined toward <1120> and <1100> directions. Defects in these films are characterized by deep level transient spectroscopy (DLTS) in order to clarify the dependence of concentrations and activation energies on substrate inclination. DLTS results show no such dependence on substrate inclination but show thickness dependence of the concentration.


Author(s):  
N. Chinone ◽  
Y. Cho ◽  
R. Kosugi ◽  
Y. Tanaka ◽  
S. Harada ◽  
...  

Abstract A new technique for local deep level transient spectroscopy (DLTS) imaging using super-higher-order scanning nonlinear dielectric microscopy is proposed. Using this technique. SiCVSiC structure samples with different post oxidation annealing conditions were measured. We observed that the local DLTS signal decreases with post oxidation annealing (POA), which agrees with the well-known phenomena that POA reduces trap density. Furthermore, obtained local DLTS images had dark and bright areas, which is considered to show the trap distribution at/near SiCVSiC interface.


2004 ◽  
Author(s):  
Souvick Mitra ◽  
Mulpuri V. Rao ◽  
N. Papanicolaou ◽  
K. A. Jones ◽  
M. Derenge

Sign in / Sign up

Export Citation Format

Share Document