Determination of the alloying content in the matrix of Zr alloys using synchrotron radiation microprobe X-ray fluorescence

2003 ◽  
Vol 321 (2-3) ◽  
pp. 221-232 ◽  
Author(s):  
A Yilmazbayhan ◽  
O Delaire ◽  
A.T Motta ◽  
R.C Birtcher ◽  
J.M Maser ◽  
...  
Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


1990 ◽  
Vol 68 (6) ◽  
pp. 2719-2722 ◽  
Author(s):  
A. Matsumuro ◽  
M. Kobayashi ◽  
T. Kikegawa ◽  
M. Senoo

2021 ◽  
pp. 124-131
Author(s):  
A.V. Alekseev ◽  
◽  
G.V. Orlov ◽  
P.S. Petrov ◽  
A.V. Slavin ◽  
...  

The determination of the elements Cu, Ni, Sb, Bi, Pb, Zn and Fe in the tin-based solder VPr35, as well as the elements Sn, Ni, Sb, Bi and In in the lead-based VPr40 solder by the method of х-ray fluorescence spectroscopy has been carried out. The calibration dependences are corrected taking into account the superposition of signals from interfering elements on the analytical signal and changes in intensity caused by inter-element influences in the matrix. The analysis was carried out by the method of fundamental parameters without using standard samples. The correctness of the results obtained was confirmed by their comparative analysis by atomic emission spectroscopy and high-resolution mass spectrometry with a glow discharge.


2017 ◽  
Vol 73 (8) ◽  
pp. 702-709 ◽  
Author(s):  
Hisashi Naitow ◽  
Yoshinori Matsuura ◽  
Kensuke Tono ◽  
Yasumasa Joti ◽  
Takashi Kameshima ◽  
...  

Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein–ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.


2003 ◽  
Vol 799 ◽  
Author(s):  
Rolf Köhler ◽  
Daniil Grigoriev ◽  
Michael Hanke ◽  
Martin Schmidbauer ◽  
Peter Schäfer ◽  
...  

ABSTRACTMulti-fold stacks of In0.6Ga0.4As quantum dots embedded into a GaAs matrix were investigated by means of x-ray diffuse scattering. The measurements were done with synchrotron radiation using different diffraction geometries. Data evaluation was based on comparison with simulated distributions of x-ray diffuse scattering. For the samples under consideration ((001) surface) there is no difference in dot extension along [110] and [-110] and no directional ordering. The measurements easily allow the determination of the average indium amount in the wetting layers. Data evaluation by simulation of x-ray diffuse scattering gives an increase of Incontent from the dot bottom to the dot top.


1988 ◽  
Vol 21 (6) ◽  
pp. 972-974 ◽  
Author(s):  
J. Ihringer ◽  
T. Wroblewski ◽  
A. Küster ◽  
J. K. Maichle

1991 ◽  
Vol 35 (B) ◽  
pp. 1205-1209
Author(s):  
I. A. Kondurov ◽  
P. A. Sushkov ◽  
T. M. Tjukavina ◽  
G. I. Shulyak

In multielement EDXRF analysis of very complex unknowns, some problems in data evaluation may be simplified if one can take into account a priori information on the properties of the incident and detected radiations, and also available data on the matrix of the sample. The number of variables can be drastically shortened in the LSM procedures in this case. One of the best examples of complex unknowns is the determination of the rare earth element content of ores, and most recently in samples of high temperature superconductors (HiTc).


1968 ◽  
Vol 12 ◽  
pp. 546-562
Author(s):  
R. Tertian

AbstractThe double dilution method has many important advantages. For any element to be determined, let us say A, It enables us to control or calculate the matrix factor (sum of the absorption end enhancement effects) for the sample being Investigated towards A radiation, and it furnishes corrected Intensities which are strictly proportional to A concentration. Thus the results are exact, whatever the general composition of the sample, their accuracy depending only on the quality of measurement and preparation. Another major practical advantage is that the method does not require systematic calibration but only a few permanent standards consisting of a pure compound or of an accurately known sample.The procedure has been tested successfully for accurate determination of rare earth elements using, for solid materials such as ores and oxide mixtures, the borax fusion technique. It also can be readily applied to liquids. All the rare earth elements can be titrated by that method, as well as yttrium, thorium and, if necessary, all the elements relevant to X-ray fluorescence analysis. The concentration range considered for solids is of one comprised between 0.5 and 100 % and, with a lesser accuracy, between 0.1 and 0-5 % Examples are given relative to the analysis of various ores. Finally it rcust be pointed out that the method is universal and applies to the analysis of every solid, especially ores, provided that they can be converted to solid or liquid solutions. It appears that most industrial analyses can be worked on In this way.


Sign in / Sign up

Export Citation Format

Share Document