Direct ion beam deposition of carbon films on silicon in the ion energy range of 15–500 eV

1991 ◽  
Vol 70 (10) ◽  
pp. 5623-5628 ◽  
Author(s):  
W. M. Lau ◽  
I. Bello ◽  
X. Feng ◽  
L. J. Huang ◽  
Qin Fuguang ◽  
...  
2000 ◽  
Vol 648 ◽  
Author(s):  
A.Yu. Belov ◽  
H.U. Jäger

AbstractAtomic-scale calculations were performed for the first time to investigate mechanical properties of amorphous carbon films grown by a realistic simulation of ion-beam deposition. The simulated films have a thickness of a few nanometers and reproduce the main structural features of real films, with the bulk content of sp3 bonded atoms varying from 35 to 95%, depending on the ion energy (E = 20-80 eV). Employing empirical interatomic potentials for carbon, the average bulk stresses as well as the atomic-level stress distributions were calculated and analysed. The bulk stresses were found to depend not only on the ion energy, but also on the film quality, in particular, on such structural inhomogeneities as local fluctuations of the sp3 fraction with the depth. The local variation of the bulk stress from the average value considerably increases as the local content of sp2 bonded atoms increases. Elastic constants of amorphous carbon films were also computed using the method of inner elastic constants, which allows for the stress dependence of elastic constants to be analysed. The variation of Young's modulus as a function of the lateral bulk stress in an amorphous film is demonstrated.


1991 ◽  
Vol 223 ◽  
Author(s):  
Qin Fuguang ◽  
Yao Zhenyu ◽  
Ren Zhizhang ◽  
S.-T. Lee ◽  
I. Bello ◽  
...  

ABSTRACTDirect ion beam deposition of carbon films on silicon in the ion energy range of 15–500eV and temperature range of 25–800°C has been studied using mass selected C+ ions under ultrahigh vacuum. The films were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy and diffraction analysis. Films deposited at room temperature consist mainly of amorphous carbon. Deposition at a higher temperature, or post-implantation annealing leads to formation of microcrystalline graphite. A deposition temperature above 800°C favors the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation was observed in these films.


1993 ◽  
Vol 2 (2-4) ◽  
pp. 285-290 ◽  
Author(s):  
Y. Lifshitz ◽  
G.D. Lempert ◽  
S. Rotter ◽  
I. Avigal ◽  
C. Uzan-Saguy ◽  
...  

1998 ◽  
Vol 13 (8) ◽  
pp. 2315-2320 ◽  
Author(s):  
Y. P. Guo ◽  
K. L. Lam ◽  
K. M. Lui ◽  
R. W. M. Kwok ◽  
K. C. Hui

Ion beam deposition provides an additional control of ion beam energy over the chemical vapor deposition methods. We have used a low energy ion beam of hydrogen and carbon to deposit carbon films on Si(100) wafers. We found that graphitic films, amorphous carbon films, and oriented diamond microcrystallites could be obtained separatedly at different ion beam energies. The mechanism of the formation of the oriented diamond microcrystallites was suggested to include three components: strain release after ion bombardment, hydrogen passivation of sp3 carbon, and hydrogen etching. Such a process can be extended to the heteroepitaxial growth of diamond films.


1994 ◽  
Vol 76 (10) ◽  
pp. 5949-5954 ◽  
Author(s):  
Gregory P. Johnston ◽  
Prabhat Tiwari ◽  
Donald J. Rej ◽  
Harold A. Davis ◽  
William J. Waganaar ◽  
...  

1997 ◽  
Vol 485 ◽  
Author(s):  
H. R. Khan ◽  
H. Frey

AbstractSilicon films of thicknesses (100 – 800 nm) are deposited on Si[111] substrate at 490°C using Si+ ions of energies (20 – 70 eV) from Silane plasma. The structure of the films depends on the energy of Si+ ions and the film grows epitaxially for ion energy <20 eV. Si films are analyzed by X-ray diffraction technique.


1991 ◽  
Vol 223 ◽  
Author(s):  
I. Kataoka ◽  
K. Ito ◽  
N. Hoshi ◽  
T. Yonemitsu ◽  
K. Etoh ◽  
...  

ABSTRACTThe x-ray reflectivity and surface morphology of C/W multilayers fabricated by ion beam sputtering (IBS) method was evaluated. Also the surface roughness and amorphous structure of C and W films fabricated by direct ion beam deposition (DIBD) method were evaluated as a function of ion energy. The reflectivity was measured by the C-K line (4.47nm) and STM was used for surface roughness measurement and root-mean-square value of correlation function of the RHEED pattern was used for evaluation of amorphous structure. The reflectivity of C/W multilayer was about 69% of the theoretical one, and micro-columnar structures were observed from STM images. The film structure and surface roughness of DIBD film were changed with the depositing ion energy. The surface roughness of films becomes smaller as the depositing energy becomes higher in the energy range from 20 to 140eV.


1994 ◽  
Vol 354 ◽  
Author(s):  
H. C. Hofsäss ◽  
C. Ronntng ◽  
U. Griesmeier ◽  
M. Gross

AbstractWe have studied the growth and the properties of CN films prepared by deposition of mass separated 12C+ and 14N+ ions. The film thickness and density were determined as a function of ion energy between 20 eV and 500 eV and for substrate temperatures of 20 °C and 350 °C. Sputtering effects limit the maximum N concentration to about 30 - 40 at.% even for ion energies as low as 20 eV. IR absorption measurements indicate predominantly C-N and C=N bonding and an amorphous or strongly disordered CN-network. For room temperature deposited CN films with N concentrations up to 25 at.% I-V curves of metal-CN-metal devices show Frenkel-Poole behavior due to field-enhanced thermal activation of localized electrons. Films deposited at 350 °C have N concentrations below 15 at.% and graphitic properties like low resistivity and a density close to graphite.


Sign in / Sign up

Export Citation Format

Share Document