Ion Beam Deposition of Epitaxial Silicon Films

1997 ◽  
Vol 485 ◽  
Author(s):  
H. R. Khan ◽  
H. Frey

AbstractSilicon films of thicknesses (100 – 800 nm) are deposited on Si[111] substrate at 490°C using Si+ ions of energies (20 – 70 eV) from Silane plasma. The structure of the films depends on the energy of Si+ ions and the film grows epitaxially for ion energy <20 eV. Si films are analyzed by X-ray diffraction technique.

1985 ◽  
Vol 51 ◽  
Author(s):  
N. Herbots ◽  
B.R. Appleton ◽  
S.J. Pennycook ◽  
T.S. Noggle ◽  
R.A. Zuhr

ABSTRACTIon beam deposition (IBD), the process whereby magnetically analyzed ions are directly deposited on single crystal substrates, has been studied for 74Ge and 30Si ions on Si(100) and Ge(100). The effects of sputtercleaning prior to deposition and substrate temperature during deposition were investigated. Three analytical techniques were systematically used to obtain information on the deposited films: (1) Rutherford backscattering combined with ion channeling, (2) cross-section TEM, and (3) Seeman-Bohlin X-ray diffraction. In the energy range explored (40–200 eV), the width of the interface between the IBD film and the substrate was found to be always less than 1 nm. Each IBD layer was highly uniform in thickness and composition for deposition temperatures from 300 K to 900 K. Without prior sputter-cleaning and annealing of the Si(100) and Ge(100) substrates, no epitaxy was observed. UHV conditions were found to be a requirement in order to grow crystalline Si films presenting bulk-like density. This was not the case for Ge films which showed bulk-like density for IBD at higher pressures. Results on the first Si/Ge superstructure grown by IBD are also shown.


1987 ◽  
Vol 110 ◽  
Author(s):  
B. L. Barthell ◽  
T. A. Archuleta ◽  
Ram Kossowsky

AbstractCalcium hydroxyapatite has been sputtered on glass and Ti-6Al-4V substrates using a 1.5-kV argon ion beam. The films have been examined by x-ray diffraction analysis, energy dispersive spectroscopy, scanning electron microscopy, and adhesion testing. Results of this experimentation are presented.


Author(s):  
В.Г. Костишин ◽  
А.Ю. Миронович ◽  
А.В. Тимофеев ◽  
И.М. Исаев ◽  
Р.И. Шакирзянов ◽  
...  

In this work, we studied textured ZnO films obtained by ion-beam deposition. X-ray diffraction patterns and micrographs of the surface revealed that asdeposited films have a polycrystalline structure. It was found that, after annealing of the samples in the temperature range from 200 ° C to 500 °, recrystallization occurs, leading to a change in the grain size and surface roughness. The dependence of the initial state of the film on the recrystallization intensity is also demonstrated. In films with an initially more perfect structure, temperature treatment at 500 ° C led to grain growth by more than 2 times and a decrease in roughness by ~ 40%.


1995 ◽  
Vol 388 ◽  
Author(s):  
J.H. Edgar ◽  
C.R. Eddy ◽  
J.A. Sprague ◽  
B.D. Sartwell

AbstractAnalysis of the phase behavior, structure, and composition of aluminum nitride thin films with up to 22% boron prepared by ion-beam assisted deposition is presented. the c-lattice constant of the film decreased with increasing boron content as expected from the formation of an aIN - wurtzite BN alloy. there was no evidence for separate boron nitride precipitation from either X-ray diffraction or FTIR. IN contrast, auger electron spectroscopy of the boron present in the films suggested that two types of boron bonding was present.


1991 ◽  
Vol 70 (10) ◽  
pp. 5623-5628 ◽  
Author(s):  
W. M. Lau ◽  
I. Bello ◽  
X. Feng ◽  
L. J. Huang ◽  
Qin Fuguang ◽  
...  

2000 ◽  
Vol 650 ◽  
Author(s):  
P. Patsalas ◽  
S. Logothetidis

ABSTRACTWe present the crystallization effects occurring in sputtered amorphous Carbon (a-C) thin films deposited on Si induced by post-growth low energy (0.5-1.5 keV) Ar+ ion beam irradiation (IBI). The a-C films after IBI have the form of an amorphous matrix with embedded crystalline regions. X-ray diffraction and Electron Microscopy measurements identified the crystalline phases of carbon and SiC. We study in detail the effects of ion energy and fluence on the crystallization process. It was found that low fluence (∼2×1016 ions/cm2) of ions with an optimum ion energy (∼1.5 keV) promoted the diamond formation. X-Ray Reflectivity (XRR) and Spectroscopic Ellipsometry were used to study the amorphous matrix. XRR discriminated the IBI induced surface and bulk effects through the density and the a-C surface roughness, showing surface smoothing to be more prominent for low energy IBI.


1991 ◽  
Vol 223 ◽  
Author(s):  
I. Kataoka ◽  
K. Ito ◽  
N. Hoshi ◽  
T. Yonemitsu ◽  
K. Etoh ◽  
...  

ABSTRACTThe x-ray reflectivity and surface morphology of C/W multilayers fabricated by ion beam sputtering (IBS) method was evaluated. Also the surface roughness and amorphous structure of C and W films fabricated by direct ion beam deposition (DIBD) method were evaluated as a function of ion energy. The reflectivity was measured by the C-K line (4.47nm) and STM was used for surface roughness measurement and root-mean-square value of correlation function of the RHEED pattern was used for evaluation of amorphous structure. The reflectivity of C/W multilayer was about 69% of the theoretical one, and micro-columnar structures were observed from STM images. The film structure and surface roughness of DIBD film were changed with the depositing ion energy. The surface roughness of films becomes smaller as the depositing energy becomes higher in the energy range from 20 to 140eV.


1994 ◽  
Vol 354 ◽  
Author(s):  
H. C. Hofsäss ◽  
C. Ronntng ◽  
U. Griesmeier ◽  
M. Gross

AbstractWe have studied the growth and the properties of CN films prepared by deposition of mass separated 12C+ and 14N+ ions. The film thickness and density were determined as a function of ion energy between 20 eV and 500 eV and for substrate temperatures of 20 °C and 350 °C. Sputtering effects limit the maximum N concentration to about 30 - 40 at.% even for ion energies as low as 20 eV. IR absorption measurements indicate predominantly C-N and C=N bonding and an amorphous or strongly disordered CN-network. For room temperature deposited CN films with N concentrations up to 25 at.% I-V curves of metal-CN-metal devices show Frenkel-Poole behavior due to field-enhanced thermal activation of localized electrons. Films deposited at 350 °C have N concentrations below 15 at.% and graphitic properties like low resistivity and a density close to graphite.


2000 ◽  
Vol 648 ◽  
Author(s):  
A.Yu. Belov ◽  
H.U. Jäger

AbstractAtomic-scale calculations were performed for the first time to investigate mechanical properties of amorphous carbon films grown by a realistic simulation of ion-beam deposition. The simulated films have a thickness of a few nanometers and reproduce the main structural features of real films, with the bulk content of sp3 bonded atoms varying from 35 to 95%, depending on the ion energy (E = 20-80 eV). Employing empirical interatomic potentials for carbon, the average bulk stresses as well as the atomic-level stress distributions were calculated and analysed. The bulk stresses were found to depend not only on the ion energy, but also on the film quality, in particular, on such structural inhomogeneities as local fluctuations of the sp3 fraction with the depth. The local variation of the bulk stress from the average value considerably increases as the local content of sp2 bonded atoms increases. Elastic constants of amorphous carbon films were also computed using the method of inner elastic constants, which allows for the stress dependence of elastic constants to be analysed. The variation of Young's modulus as a function of the lateral bulk stress in an amorphous film is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document