Experimental study and finite element simulation of the effect of cone angle on drawing ratio and thickness distribution in hydroforming of conical-cylindrical cups

2011 ◽  
Author(s):  
M. Sepehrizadeh ◽  
A. Gorji ◽  
B. Zareh ◽  
M. Bakhshi-Jooybari ◽  
S. Norouzi ◽  
...  
2013 ◽  
Vol 819 ◽  
pp. 81-85
Author(s):  
Jing Tao Yue ◽  
Hui Pu ◽  
Xiang He Tao

Heavy general transport vehicles are recommended as lashing points during rescue operations of winch. Taking SX2190 heavy transport vehicles frame as the experimental object, this paper introduces contents and methods of the test, and gets evaluation result of the rear frame through finite element simulation and experimental validation of the real frame-towing hook system for winch lashing car.


2011 ◽  
Vol 301-303 ◽  
pp. 452-455 ◽  
Author(s):  
Yuji Kotani ◽  
Hisaki Watari ◽  
Akihiro Watanabe

The approach to total weight reduction has been a key issue for car manufacturers as they cope with more and more stringent requirements for fuel economy. In sheet metal forming, local increases in product-sheet thickness effectively contribute to reducing the total product weight. Products could be designed more efficiently if a designer could predict and control the thickness distribution of formed products. This paper describes a numerical simulation and evaluation of the material flow in local thickness increments of products formed by an ironing process. In order to clarify the mechanism of the local increase in sheet thickness, a 3-D numerical simulation of deep drawing and ironing was performed using finite-element simulation. The effects of various types of finite elements that primarily affect thickness changes in original materials and thickness prediction were investigated. It was found that the sheet-thickness distribution could be predicted if the original material was relatively thick and if an appropriate type of finite element is selected.


2011 ◽  
Vol 473 ◽  
pp. 579-586
Author(s):  
Majid Elyasi ◽  
Hassan Khanlari ◽  
Mohammad Bakhshi-Jooybari

In this paper, the effect of pressure path on thickness distribution and product geometry in the tube hydroforming process is studied by finite element simulation and experimental approach. In simulations and experiments, low carbon stainless steel (SS316L) seamless tubes were used. The obtained results indicated that with increasing of the initial pressure, the bulge value of the part increases and the wrinkling value decreases. In addition, if the initial pressure is highly decreased, then bursting may occur.


2011 ◽  
Vol 189-193 ◽  
pp. 2634-2637
Author(s):  
Abdol Hamid Gorji ◽  
M. Bakhshi ◽  
S. Nourouzi ◽  
S.J. Hosseinipour ◽  
G. Mohammad-Alinejad

Forming conical parts is one of the complex and difficult fields in sheet metal forming processes; because of the low contact area of the sheet with the punch in the initial stages of forming, too much tension is applied to the sheet causing burst occurrence. Furthermore, since the major part of the sheet surface between the blank holder and punch tip is free, wrinkles appear on the wall of the drawn parts. Therefore, these parts are normally formed in the industry by spinning, explosive forming or multi-stage deep drawing processes. In this paper, the parameters in the process of hydroforming conical parts along with using finite element simulation and experimental procedures have been studied. The punch radiuses parameters (the punch tip radius and the radius between the conical and cylinder section and their effects on the bursting and thickness distribution were investigated.


Sign in / Sign up

Export Citation Format

Share Document