Investigation of titanium silicide formation in Ti+Si reactions using infrared spectroscopy and x‐ray diffraction

1995 ◽  
Vol 77 (10) ◽  
pp. 5156-5159 ◽  
Author(s):  
K. L. Saenger ◽  
C. Cabral ◽  
L. A. Clevenger ◽  
R. A. Roy
1992 ◽  
Vol 15 (1) ◽  
pp. 9-26 ◽  
Author(s):  
C. Nobili ◽  
F. Nava ◽  
G. Ottaviani ◽  
M. Costato ◽  
G. De Santi ◽  
...  

In-situ resistivity vs. temperature, Rutherford backscattering spectrometry, Auger electron spectroscopy and X-ray diffraction measurements have been performed in order to study the effects arising from the presence of oxygen in the annealing ambient on the integrity of amorphous films of TiSix, with x ranging from 1.45 to 2.1. Crystalisation occurs around 400 C. The presence of oxygen produces the formation of silicon and titanium oxide around 500 C. Critical analysis of the experimental results have indicated that metal oxidation is inhibited when an excess of silicon is present, which suggests the use of a sputtered Si coating cap as a medium capable of effectively decoupling the silicide film from oxygen. This avoids unwanted Ti oxidation even in heavily oxygen contaminated ambients up to the highest temperatures used for the formation of low resistivity titanium disilicide.


1996 ◽  
Vol 429 ◽  
Author(s):  
K. Ando ◽  
T. Ishigami ◽  
Y. Matsubara ◽  
T. Horiuchi ◽  
S. Nishimoto

AbstractAn in situ rapid thermal hydrogenation (RTH) pretreatment of titanium prior to rapid thermal annealing (RTA), or RTH/RTA, is proposed as a silicide formation annealing in a CMOS self-aligned silicide (salicide) process. The in situ RTH is found to enhance silicidation, to reduce nitridation, and even to lower the resultant sheet resistance of titanium silicide.During in situ RTH (e.g., at 550°C), amorphous Ti silicide (e.g., 15-nm thick) grows selectively on Si. Furthermore, Ti nitridation during subsequent RTA (690°C, N2, 10 Torr, 30 s) is reduced depending on RTH (H2, 10 Torr, 30 s) temperature. Accordingly, for 550°C RTH and an initial Ti thickness of 15 nm, the sheet resistance obtained at the 0.27-μm-wide n+ poly-Si gate after a phase transition annealing (800°C, Ar, 10 s) was lower (11.7 Ω /□, st. dev. = 6%) than that of conventional Ti silicide (15.8 Ω/□, st. dev. = 10%). The silicidation enhancement and nitridation reduction are related to crystal structure metamorphosis or to hydrogen interstitial incorporation in the Ti layer during RTH as observed by x-ray diffraction analysis. It is concluded that in situ RTH pretreatment before RTA is very promising as a sub-quarter-micron CMOS salicide process.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4723
Author(s):  
Sara Dalle Vacche ◽  
Vijayaletchumy Karunakaran ◽  
Alessia Patrucco ◽  
Marina Zoccola ◽  
Loreleï Douard ◽  
...  

Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5–12 nm, stacks of nanofibrils with widths of 20–200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils.


2013 ◽  
Vol 803 ◽  
pp. 80-84
Author(s):  
Yu Qi Liu ◽  
Yong Yang ◽  
Rui Yang ◽  
Xiao Jun Xu

A novel metalorganic coordination polymer, namely [Co3(bpd)5.5(NCS)6(NH3)]n2H2O (1) (bpd=1,4-bis (4-pyridyl)-2,3-diaza-1,3-butadiene), has been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction. Compound 1 presents 2D[3,4,-connected 3-nodal net with the point symbol (4268210)(4462)(8210). In addition, four identical 2D single nets is interlocked with each other in parallel, thus directly leading to the formation of a polycatenated layer (2D2D).


2021 ◽  
Author(s):  
Rahma Rahzelli Zrelli ◽  
Fathia Chehimi-Moumen ◽  
Dalila Ben Hassen-Chehimi ◽  
Malika Trabelsi-Ayadi

Abstract The synthesis of the diphosphate HYP2O7·3H2O was made via soft chemistry route from evaporation of aqueous solution at room temperature. The obtained compound, was characterized by means of X-ray diffraction (XRD) and infrared spectroscopy (IR). The results showed a high purity phase. IR spectrum of this diphosphate revealed usual signals related to P2O7 diphosphate group and water molecules. The thermal decomposition of the synthesized product by DTA / TG proceeded through four stages leading to the formation of the Y2P4O13 as a final product. On the other hand, its decomposition by CRTA took place in three stages leading to the formation of the anhydrous diphosphate HYP2O7 as a final product. X-ray powder diffraction and infrared spectroscopy were used to identify these materials. Furthermore the electrical properties of the HYP2O7 were investigated through impedance complex analysis. Modest conductivity has been observed in this material at relatively medium temperature range. Activation energy of 0.67 and 1.44 eV, was deduced from the corresponding Arrhenius plot.The optical band gap of the title compound is calculated and found to be 2.71 eV.


Sign in / Sign up

Export Citation Format

Share Document