Fabrication of disconnected three‐dimensional silver nanostructures in a polymer matrix

2012 ◽  
Vol 100 (6) ◽  
pp. 063120 ◽  
Author(s):  
Kevin Vora ◽  
SeungYeon Kang ◽  
Shobha Shukla ◽  
Eric Mazur
Author(s):  
Diogo José Horst ◽  
Pedro Paulo Andrade Junior

Conductive and magnetic filaments are revolutionizing three-dimensional printing (3DP) to a new level. This review study presents the current state of the art on the subject, summarizing recent high impact studies about main advances regarding the application of 3DP filaments based on carbon nanostructures such as graphene, carbon fibers, nanotubes, and conductive carbon black embedded in a polymer matrix, by reviewing its main characteristics and showing the main producers and also the products available on the market. The availability of inexpensive, reliable, and electrically conductive material will be indispensable for the fabrication of circuits and sensors before the full potential of 3DP for customized products incorporating electrical elements can be fully explored.


Author(s):  
Iulian-Gabriel Birsan ◽  
Adrian Circiumaru ◽  
Vasile Bria ◽  
Igor Roman ◽  
Victor Ungureanu

Fabric reinforced or textile composites are increasingly used in aerospace, automotive, naval and other applications. They are convenient material forms providing adequate stiffness and strength in many structures. In such applications they are subjected to three-dimensional states of stress coupled with hydro-thermal effects. Assuming that a composite material is a complex structure it is obvious that is hard to describe all its properties in terms of its parts properties. The properties of the composite depend not only on the properties of the components but on quality and nature of the interface between the components and its properties. As reinforcement two types of fiber fabric were used; first one is a simple type fabric of untwisted tows of carbon filaments while the second one is also simple type but as yarn and fill are used alternately untwisted tows of carbon and aramide filaments. There were some problems to be solved before molding: fabric stability during handling, cutting, imbuing the carbon and aramide tows are slipping one on each other leading to fabric defects; generally the epoxy systems do not adhere to the carbon fiber; in order to obtain a valuable material the nature of interface must be the same for polymer-carbon fiber and polymer aramide fiber. In order to solve these problems the two fabrics were covered (by spraying) with a thin film of PNB rubber. Into the rubber solution were also dispersed small amounts of clay (to create a better interface) and carbon black (to improve the electrical conductivity). The rubber presence solves the fabric stability problem; ensures the same type of interface between fibers and polymer matrix; ensures a more elastic interface between fibers and polymer matrix. This treatment induces modification on tensile behavior of fabrics. This study is about mechanical evaluation of such fabrics.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 193
Author(s):  
Guang Yang ◽  
Zongli Xie ◽  
Marlene Cran ◽  
Chunrui Wu ◽  
Stephen Gray

Pervaporation (PV) has been an intriguing membrane technology for separating liquid mixtures since its commercialization in the 1980s. The design of highly permselective materials used in this respect has made significant improvements in separation properties, such as selectivity, permeability, and long-term stability. Mixed-matrix membranes (MMMs), featuring inorganic fillers dispersed in a polymer matrix to form an organic–inorganic hybrid, have opened up a new avenue to facilely obtain high-performance PV membranes. The combination of inorganic fillers in a polymer matrix endows high flexibility in designing the required separation properties of the membranes, in which various fillers provide specific functions correlated to the separation process. This review discusses recent advances in the use of nanofillers in PV MMMs categorized by dimensions including zero-, one-, two- and three-dimensional nanomaterials. Furthermore, the impact of the nanofillers on the polymer matrix is described to provide in-depth understanding of the structure–performance relationship. Finally, the applications of nanofillers in MMMs for PV separation are summarized.


2019 ◽  
Vol 4 (1) ◽  
pp. 26-40 ◽  
Author(s):  
Diogo José Horst ◽  
Pedro Paulo Andrade Junior

Conductive and magnetic filaments are revolutionizing three-dimensional printing (3DP) to a new level. This review study presents the current state of the art on the subject, summarizing recent high impact studies about main advances regarding the application of 3DP filaments based on carbon nanostructures such as graphene, carbon fibers, nanotubes, and conductive carbon black embedded in a polymer matrix, by reviewing its main characteristics and showing the main producers and also the products available on the market. The availability of inexpensive, reliable, and electrically conductive material will be indispensable for the fabrication of circuits and sensors before the full potential of 3DP for customized products incorporating electrical elements can be fully explored.


2017 ◽  
Vol 56 (3) ◽  
pp. 672-679 ◽  
Author(s):  
Neeru Tiwari ◽  
Neha Agarwal ◽  
Debmalya Roy ◽  
Kingsuk Mukhopadhyay ◽  
Namburi Eswara Prasad

Author(s):  
Mosfequr Rahman ◽  
F. N. U. Aktaruzzaman ◽  
Saheem Absar ◽  
Aniruddha Mitra ◽  
Awlad Hossain

Depending on the type of matrix materials, composites can be broadly divided into three different major classifications: Organic-matrix composites (OMC), metal-matrix composites (MMC), and ceramic-matrix composites (CMC). OMC can be further sub-classified into polymer-matrix composites (PMC) and carbon-matrix composites or carbon-carbon composites. In this paper the main objective is to focus on polyurethane based PMC composites. Polyurethane is one of the widely used polymer matrix materials. It has diversified applications, easily available and cheap. In this computational study a composite shaft with a core made of matrix material completely wrapped around by a woven fiber cloth with a very strong bonding between core and fibers is considered. Three different types of woven fibers: fiber glass, Kevlar 49, and carbon fibers, are considered. A woven fabric is the interlocking or weaving of two unidirectional fibers. This configuration is often used to produce curve surfaces because of the ease with which it could be placed on and conform to curved surfaces. Authors had fabricated these three composites in their in-house laboratory. They had also experimentally measured the mechanical properties of these composites using 3-point bending test which already been published. In this current study finite element analyses has been performed for the modeling of the static response of these three different polyurethane based composite shafts as fiber glass reinforced polyurethane epoxy, carbon fiber reinforced polyurethane epoxy, and Kevlar fibers reinforced polyurethane epoxy for three different boundary conditions. These three boundary conditions are simply supported, cantilever, both end fixed types with bending loads applied at the middle for simply supported case and distributed load along the length of the shaft for the last two types of boundary conditions. A three dimensional model of the composite beam has been implemented in this study using SolidWorks. A finite element commercial software ANSYS is used to investigate the stress response and deformation behavior of the model geometry for these three polyurethane based composite shafts for these three boundary conditions. A twenty node three dimensional element has been implemented for the finite element formulation of the modeled geometry such that it is applicable for the analysis of a layered composite structure, while providing support for linear, large rotation, and large strain nonlinear loading conditions. Convergence has also been ensured for various mash configurations in this work.


1999 ◽  
Vol 584 ◽  
Author(s):  
Hideo Namatsu ◽  
Toru Yamaguchi ◽  
Kenji Kurihara

AbstractOur research focuses on the line-edge roughness of resist patterns and how to reduce it in order to establish nanolithography as a practical tool. Commercially available e-beam resists exhibit a line-edge roughness of 3 nm (σ) or more. It is caused mainly by polymer aggregates in the resist. During development, they are extracted through dissolution of the surrounding polymer matrix. That is, the aggregates themselves dissolve more slowly than the surrounding matrix; and those that remain embedded in the resist produce line-edge roughness. To reduce the roughness, the effect of the aggregates must be suppressed. One way of doing this is to use a resist containing small aggregates. A good candidate is hydrogen silsesquioxane, which has a three-dimensional framework. Another way is to use a resist in which the aggregates are linked together, which makes them difficult to extract during development. A good example is an acrylate-type resist with a cross-linker mixed in.


Sign in / Sign up

Export Citation Format

Share Document