Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles

2012 ◽  
Vol 136 (16) ◽  
pp. 164905 ◽  
Author(s):  
B. U. Felderhof
Author(s):  
F. Pérez-Ràfols ◽  
P. Wall ◽  
A. Almqvist

In this paper, we study flow through thin porous media as in, e.g. seals or fractures. It is often useful to know the permeability of such systems. In the context of incompressible and iso-viscous fluids, the permeability is the constant of proportionality relating the total flow through the media to the pressure drop. In this work, we show that it is also relevant to define a constant permeability when compressible and/or piezo-viscous fluids are considered. More precisely, we show that the corresponding nonlinear equation describing the flow of any compressible and piezo-viscous fluid can be transformed into a single linear equation. Indeed, this linear equation is the same as the one describing the flow of an incompressible and iso-viscous fluid. By this transformation, the total flow can be expressed as the product of the permeability and a nonlinear function of pressure, which represents a generalized pressure drop.


2020 ◽  
Vol 367 ◽  
pp. 421-426 ◽  
Author(s):  
Hong-Wei Zhu ◽  
Qing-Fan Shi ◽  
Liang-Sheng Li ◽  
Mingcheng Yang ◽  
Aiguo Xu ◽  
...  

1963 ◽  
Vol 16 (4) ◽  
pp. 595-619 ◽  
Author(s):  
G. I. Taylor

The conditions which determine the existence and position of cavitation in the narrow passages of hydrodynamically lubricated bearings have been assumed to be the same as those which produce cavitation bubbles, namely a lowering of pressure below that at which gas separates out of fluid. This assumption enables certain predictions to be made which in some cases are verified, but it does not provide a physical description of the interface between oil and air. Theoretical analysis of the situation seems to be beyond our present capacity, and in none of the experiments so far published has it been possible to measure both the most important relevant data, namely the minimum clearance and the oil flow through it.A method is described here which enables this to be done. It turns out that two physically different kinds of cavitation can occur. One of these is well described by the existing theory and assumption. Surface tension plays no part in it, and in most text books on hydrodynamic lubrication is not even mentioned. The other kind, which is akin to hydrodynamic separation rather than bubble cavitation, depends essentially on surface tension. Both kinds appear clearly in published photographs taken through transparent bearings, but the experimenters do not seem to have distinguished between them.The reason why surface tension, which is only able to supply stresses that are exceedingly small compared with the pressure variation in the fluid itself, may have a large effect on the flow can be understood by considering the flow of a viscous fluid in a tube when blown out by air pressure applied at one end. For any given length of fluid the rate of outflow depends almost entirely on the pressure applied, the surface tension force being negligible; but the amount of fluid left in the tube after the air column has reached the end depends essentially on surface tension.


1973 ◽  
Vol 40 (4) ◽  
pp. 879-884 ◽  
Author(s):  
Prabhamani R. Patil ◽  
N. Rudraiah

The stability of the onset of thermal convection of a conducting viscous fluid in a porous medium has been investigated using the linear (normal mode technique) and the non-linear (energy) stability theories. Both the theories show that the stability region is increased to the maximum extent when the usual viscous dissipation is also present in addition to the dissipation due to Darcy’s resistance and Joule heating.


2011 ◽  
Vol 8 (3-4) ◽  
pp. 295-308 ◽  
Author(s):  
Kh. S. Mekheimer ◽  
S. Z.-A. Husseny ◽  
A. I. Abd el Lateef

Peristaltic transport of an incompressible viscous fluid due to an asymmetric waves propagating on the horizontal sidewalls of a rectangular duct is studied under long-wavelength and low-Reynolds number assumptions. The peristaltic wave train on the walls have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with velocity of the wave. The effect of aspect ratio, phase difference, varying channel width and wave amplitudes on the pumping characteristics and trapping phenomena are discussed in detail. The results are compared to with those corresponding to Poiseuille flow.


Sign in / Sign up

Export Citation Format

Share Document