scholarly journals A compact instrument for adjusting laser beams to be accurately coincident and coaxial and its use in biomedical imaging using wave-mixed laser sources

2012 ◽  
Vol 83 (8) ◽  
pp. 083705 ◽  
Author(s):  
R. Amor ◽  
G. Norris ◽  
J. Dempster ◽  
W. B. Amos ◽  
G. McConnell
2021 ◽  
Vol 255 ◽  
pp. 06003
Author(s):  
Rajeev Ranjan ◽  
Maria Antonietta Ferrara ◽  
Luigi Sirleto

In this work, the implementation of a femtosecond Stimulated Raman Scattering microscope, equipped with three femtosecond laser sources: a Titanium-Sapphire (Ti:Sa), an optical parametric oscillator (OPO), and a second harmonic generator (SHG); is presented. Our microscope is designed so that it can cover all the regions of Raman spectra, taking advantage of two possible laser combinations. The first, Ti:Sa and OPO laser beams, which cover the C-H region (>2800 cm-1 ) in stimulated Raman gain (SRG) modality, whereas the second, Ti:Sa and SHG laser beams, covering the C-H region and the fingerprint region in stimulated Raman losses (SRL) modality. The successful realization of the microscope is demonstrated, reporting images of polystyrene beads using both SRL and SRG modalities.


2017 ◽  
Vol 84 (1) ◽  
Author(s):  
Inga-Maria Eichentopf ◽  
Martin Reufer

AbstractIn order to analyze the beam quality of laser sources wavefront measurements using a Shack–Hartmann sensor became an established way. With the detection of the wavefront deflection a change of the modal composition of the laser beam can be recorded directly. While this method is well known for nearly Gaussian laser beams, the wavefront analysis of broadarea semiconductor lasers is an open field of current research. Detailed analysis of the wavefront gives an additional path to get an insight into the transverse modal composition of semiconductor lasers, which have a dominant impact on the output parameters of the devices. For the presented investigations lasers emitting light in the near infrared (


Author(s):  
M. Möbus ◽  
P. Woizeschke

AbstractDeep-penetration laser beam welding is highly dynamic and affected by many parameters. Several investigations using differently sized laser spots, spot-in-spot laser systems, and multi-focus optics show that the intensity distribution is one of the most influential parameters; however, the targeted lateral and axial intensity design remains a major challenge. Therefore, a laser processing optic has been developed that coaxially combines two separate laser sources/beams with different beam characteristics and a measuring beam for optical coherence tomography (OCT). In comparison to current commercial spot-in-spot laser systems, this setup not only makes it possible to independently vary the powers of the two laser beams but also their focal planes, thus facilitating the investigation into the influence of specific energy densities along the beam axis. First investigations show that the weld penetration depth increases with increasing intensities in deeper focal positions until the reduced intensity at the sample surface, due to the deep focal position, is no longer sufficient to form a stable keyhole, causing the penetration depth to drop sharply.


2020 ◽  
Vol 4 (1) ◽  
pp. 14-19
Author(s):  
H. H. Asadov ◽  
U. F. Mamedova

One of ways to increase accuracy of ground tracking of orbital satellites is high accuracy calibration of network of microtelescopes used for this purpose. To attain high accuracy utilization of stable laser sources of radiation is most expedient. To install such sources the balloon platforms mounted at some height are practiced. But utilization of only one fixed height of all sources for calibration could lead to insufficient value of signal/noise ratio due to unpredictable atmospheric events. At the same time utilization of sources with different spectral characteristics can complicate the required methodic for analysis. Authors suggest utilization of same type lasers and carrying out of calibration using platforms installed at different heights. Nonapparent function of dependence of laser beams divergence on height of balloon installation is considered for analysis. Some integrated limitation is imposed on this function. It is assumed that number of microtelescopes receiving optical radiation of one source linearly depends on height of the source. It is required to find out the optimum type of suggested non-apparent function upon which target functional composed as sum of all calibration signals could reach maximum. Utilization of such property of target functional for checking up of carried out calibration procedure is suggested. Providing for the required type of suggested non-apparent function is technically resolvable task because the beam divergence is controlled parameter and height of platform can be measured with sufficient accuracy.


1985 ◽  
Vol 132 (3) ◽  
pp. 191 ◽  
Author(s):  
Luk Kwai-Man ◽  
Yu Ping-Kong
Keyword(s):  

2020 ◽  
pp. 3-5
Author(s):  
Y. G. Zakharenko ◽  
N. A. Kononova ◽  
V. L. Fedorin ◽  
Z. V. Fomkina ◽  
K. V. Chekirda

The results of the work to create a complex of high-precision hardware for the unit of length reproduction and transferring carried out at “D. I. Mendeleyev Institute for Metrology (VNIIM)” are represented. This complex will serve as the basis for the further development of the reference base of the Russian Federation in the field of length measurements and will allow reproduction of the unit of length at two wavelengths of 633 nm and 532 nm, as well as measurements of the wavelength of laser sources in vacuum in the range from 500 to 1050 nm.


Sign in / Sign up

Export Citation Format

Share Document