scholarly journals Laser beam welding setup for the coaxial combination of two laser beams to vary the intensity distribution

Author(s):  
M. Möbus ◽  
P. Woizeschke

AbstractDeep-penetration laser beam welding is highly dynamic and affected by many parameters. Several investigations using differently sized laser spots, spot-in-spot laser systems, and multi-focus optics show that the intensity distribution is one of the most influential parameters; however, the targeted lateral and axial intensity design remains a major challenge. Therefore, a laser processing optic has been developed that coaxially combines two separate laser sources/beams with different beam characteristics and a measuring beam for optical coherence tomography (OCT). In comparison to current commercial spot-in-spot laser systems, this setup not only makes it possible to independently vary the powers of the two laser beams but also their focal planes, thus facilitating the investigation into the influence of specific energy densities along the beam axis. First investigations show that the weld penetration depth increases with increasing intensities in deeper focal positions until the reduced intensity at the sample surface, due to the deep focal position, is no longer sufficient to form a stable keyhole, causing the penetration depth to drop sharply.

2021 ◽  
Vol 111 (11-12) ◽  
pp. 863-868
Author(s):  
Thorsten Mattulat ◽  
Ronald Pordzik ◽  
Peer Woizeschke

Die optische Kohärenztomographie (OCT) erlaubt die zerstörungsfreie In-situ-Überwachung der Einschweißtiefe beim Laserstrahlschweißen. Für dieses Verfahren wird hier der Einfluss von verringerten Umgebungsdrücken auf die Messqualität untersucht. Es wird gezeigt, dass sich bei niedrigerem Umgebungsdruck deutlich größere Signalanteile aus dem Bereich des Bodens der Dampfkapillare zurückerhalten lassen. Auf diese Weise steigen die effektive Messfrequenz und die Erkennbarkeit von Änderungen der Einschweißtiefe.   Optical coherence tomography (OCT) enables non-destructive in-situ monitoring of the weld penetration depth during laser beam welding. For this technology, the influence of reduced ambient pressures on the measurement quality is investigated. It is shown that significantly larger signal components are obtained from the bottom of the vapor capillary at lower ambient pressure increasing the applicable measurement frequency and the detectability of changes in the weld penetration depth.


2012 ◽  
Author(s):  
Teresa Sibillano ◽  
Antonio Ancona ◽  
Domenico Rizzi ◽  
Francesco Mezzapesa ◽  
Ali Riza Konuk ◽  
...  

2021 ◽  
Author(s):  
Eric Wasilewski ◽  
Nikolay Doynov ◽  
Ralf Ossenbrink ◽  
Vesselin Michailov

Abstract This work presents a comparative study of thermal conditions that occur during laser beam welding of high strength steel 100Cr6 that often leads to a loss of technological strength and may conditionally produce cold cracks. The results from both experiments and thermal-metallurgical FE-simulations indicate that the type of heat coupling changes significantly when welding with different process parameters, e.g., in the transition between conduction and deep penetration welding. Further, the simulations show that as a result of the high welding speeds and reduced energy per unit length, extremely high heating rates of up to 2x104 K s-1 (set A) resp. 4x105 K s-1 (set B) occur in the material. Both welds thus concern a range of values for which conventional Time-Temperature-Austenitization (TTA) diagrams are not currently defined, so that the material models can only be calibrated using general assumptions. This noted change in energy per unit length and welding speeds causes significantly steep temperature gradients with a slope of approximately 5x103 K mm-1 and strong drops in the heating and cooling rates, particularly in the heat affected zone near the weld metal. This means that even short distances along the length present a staggering difference in relation to the temperature peaks. The temperature cycles also show very different cooling rates for the respective parameter sets, although in both cases they are well below a cooling time t8/5 of one second, so that the phase transformation always leads to the formation of martensite. The results from this study are intended to be used for further detailed experimental and numerical investigation of microstructure, hydrogen distribution, and stress-strain development at different restrain conditions.


1997 ◽  
Author(s):  
J. Beersiek ◽  
R. Poprawe ◽  
W. Schulz ◽  
Hongping Gu ◽  
R. E. Mueller ◽  
...  

2021 ◽  
Vol 135 ◽  
pp. 106715
Author(s):  
Ömer Üstündağ ◽  
Nasim Bakir ◽  
Andrey Gumenyuk ◽  
Michael Rethmeier

2019 ◽  
Vol 125 (11) ◽  
Author(s):  
Jonas B. Ohland ◽  
Udo Eisenbarth ◽  
Markus Roth ◽  
Vincent Bagnoud

Abstract Laguerre–Gaussian-like laser beams have been proposed for driving experiments with high-intensity lasers. They carry orbital angular momentum and exhibit a ring-shaped intensity distribution in the far field which make them particularly attractive for various applications. We show experimentally and numerically that this donut-like shape is extremely sensitive to off-axis wavefront deformations. To support our claim, we generate a Laguerre–Gaussian-like laser beam and apply a selection of common low-order wavefront aberrations. We investigate the visibility of those wavefront deformations in the far field. Under use of established tolerance criteria, we determine the thresholds for the applied aberration and compare the findings with simulations for verification.


Sign in / Sign up

Export Citation Format

Share Document