Experimental challenge to nucleosynthesis in core-collapse supernovae - Very early epoch of type II SNe -

2013 ◽  
Author(s):  
S. Kubono ◽  
Dam N. Binh ◽  
S. Hayakawa ◽  
T. Hashimoto ◽  
D. M. Kahl ◽  
...  
2019 ◽  
Vol 631 ◽  
pp. A5 ◽  
Author(s):  
Emmanouil Zapartas ◽  
Selma E. de Mink ◽  
Stephen Justham ◽  
Nathan Smith ◽  
Alex de Koter ◽  
...  

Hydrogen-rich supernovae, known as Type II (SNe II), are the most common class of explosions observed following the collapse of the core of massive stars. We used analytical estimates and population synthesis simulations to assess the fraction of SNe II progenitors that are expected to have exchanged mass with a companion prior to explosion. We estimate that 1/3 to 1/2 of SN II progenitors have a history of mass exchange with a binary companion before exploding. The dominant binary channels leading to SN II progenitors involve the merger of binary stars. Mergers are expected to produce a diversity of SN II progenitor characteristics, depending on the evolutionary timing and properties of the merger. Alternatively, SN II progenitors from interacting binaries may have accreted mass from their companion, and subsequently been ejected from the binary system after their companion exploded. We show that the overall fraction of SN II progenitors that are predicted to have experienced binary interaction is robust against the main physical uncertainties in our models. However, the relative importance of different binary evolutionary channels is affected by changing physical assumptions. We further discuss ways in which binarity might contribute to the observed diversity of SNe II by considering potential observational signatures arising from each binary channel. For supernovae which have a substantial H-rich envelope at explosion (i.e., excluding Type IIb SNe), a surviving non-compact companion would typically indicate that the supernova progenitor star was in a wide, non-interacting binary. We argue that a significant fraction of even Type II-P SNe are expected to have gained mass from a companion prior to explosion.


2020 ◽  
Vol 494 (4) ◽  
pp. 5230-5238
Author(s):  
Roni Anna Gofman ◽  
Naomi Gluck ◽  
Noam Soker

ABSTRACT We evolve stellar models with zero-age main-sequence (ZAMS) mass of MZAMS ≳ 18 M⊙ under the assumption that they experience an enhanced mass-loss rate when crossing the instability strip at high luminosities and conclude that most of them end as type Ibc supernovae (SNe Ibc) or dust-obscured SNe II. We explore what level of enhanced mass-loss rate during the instability strip would be necessary to explain the ‘red supergiant problem’. This problem refers to the dearth of observed core-collapse supernovae progenitors with MZAMS ≳ 18 M⊙. Namely, we examine what enhanced mass-loss rate could make it possible for all these stars actually to explode as core-collapse supernovae (CCSNe). We find that the mass-loss rate should increase by a factor of at least about 10. We reach this conclusion by analysing the hydrogen mass in the stellar envelope and the optical depth of the dusty wind at the explosion, and crudely estimate that under our assumptions only about a fifth of these stars explode as unobscured SNe II and SNe IIb. About 10–15 per cent end as obscured SNe II that are infrared-bright but visibly very faint, and the rest, about 65–70 per cent, end as SNe Ibc. However, the statistical uncertainties are still too significant to decide whether many stars with MZAMS ≳ 18 M⊙ do not explode as expected in the neutrino driven explosion mechanism, or whether all of them explode as CCSNe, as expected by the jittering jets explosion mechanism.


2011 ◽  
Vol 7 (S279) ◽  
pp. 34-39 ◽  
Author(s):  
Iair Arcavi

AbstractWe present R-Band light curves of Type II supernovae (SNe) from the Caltech Core Collapse Program (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three distinct classes: plateau, slowly declining and rapidly declining events. The latter class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. We present also host galaxy trends from the Palomar Transien Factory (PTF) core collapse SN sample, which augment some of the photometric results.


2020 ◽  
Vol 500 (4) ◽  
pp. 5639-5656
Author(s):  
P J Vallely ◽  
C S Kochanek ◽  
K Z Stanek ◽  
M Fausnaugh ◽  
B J Shappee

ABSTRACT We present observations from the Transiting Exoplanet Survey Satellite (TESS) of twenty bright core-collapse supernovae with peak TESS-band magnitudes ≲18 mag. We reduce this data with an implementation of the image subtraction pipeline used by the All-Sky Automated Survey for Supernovae (ASAS-SN) optimized for use with the TESS images. In empirical fits to the rising light curves, we do not find strong correlations between the fit parameters and the peak luminosity. Existing semi-analytic models fit the light curves of the Type II supernovae well, but do not yield reasonable estimates of the progenitor radius or explosion energy, likely because they are derived for use with ultraviolet observations while TESS observes in the near-infrared. If we instead fit the data with numerically simulated light curves, the rising light curves of the Type II supernovae are consistent with the explosions of red supergiants. While we do not identify shock breakout emission for any individual event, when we combine the fit residuals of the Type II supernovae in our sample, we do find a >5σ flux excess in the ∼1 d before the start of the light-curve rise. It is likely that this excess is due to shock breakout emission, and that during its extended mission TESS will observe a Type II supernova bright enough for this signal to be detected directly.


2021 ◽  
Vol 922 (1) ◽  
pp. 55
Author(s):  
Emma R. Beasor ◽  
Ben Davies ◽  
Nathan Smith

Abstract Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 and 30M ⊙the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolution, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new M ̇ prescription calibrated to RSGs with initial masses between 10 and 25 M ⊙, which unlike previous prescriptions does not overestimate M ̇ for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass loss by recomputing the evolution of stars with masses 12–27 M ⊙ with the new M ̇ -prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30 M ⊙ to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.


2005 ◽  
Vol 192 ◽  
pp. 303-308
Author(s):  
A. Elmhamdi ◽  
N.N. Chugai ◽  
I.J. Danziger

SummaryWe analyze late-time observations, available photometry and spectra, of a sample of type II plateau supernovae (SNe IIP). The possibility of using Hα luminosity at the nebular epoch as a tracer of 56Ni mass in this class of objects is investigated, yielding a consistency with the photometry-based estimates within 20%. Interesting correlations are found and their impacts on our present understanding of the physics of core collapse SNe are discussed.


1999 ◽  
Vol 194 ◽  
pp. 364-372 ◽  
Author(s):  
Massimo Turatto ◽  
Enrico Cappellaro ◽  
Artashes R. Petrosian

New values of the frequencies of SNe are presented and discussed in relation to their use as SF indicators. The rate of core-collapse SNe is correlated to the colors and the FIR excesses of the parent galaxies in the sense that galaxies with blue colors and strong infrared excess have higher occurrence of type II and Ib/c SNe than other galaxies. This is in agreement with the expectation that they contain a higher fraction of massive stars. Instead no correlation is present for SNIa. The SN frequency does not correlate with the galaxy activity probably because searches are unable to discover SNe in the nuclear regions of galaxies.A number of SNe with spectra similar to those of AGN exist. Their characteristic features are explained with explosion of SNe in dense environments, reminding of cSNR's invoked in the starburst model for AGNs. Some recent, peculiar SNe seem linked to GRB's opening the possibility that at least some GRB's arise from this kind of stellar explosion.


2016 ◽  
Vol 12 (S329) ◽  
pp. 64-68
Author(s):  
Athira Menon ◽  
Alexander Heger

AbstractWe present results of a systematic and detailed stellar evolution study of binary mergers for blue supergiant (BSG) progenitors of Type II supernovae, particularly for SN 1987A. We are able to reproduce nearly all observational aspects of the progenitor of SN 1987A, Sk –69 °202, such as its position in the HR diagram, the enrichment of helium and nitrogen in the triple-ring nebula and its lifetime before its explosion. We build our evolutionary model based on the merger model of Podsiadlowski et al. (1992), Podsiadlowski et al. (2007) and empirically explore an initial parameter consisting of primary masses, secondary masses and different depths up to which the secondary penetrates the He core during the merger. The evolution of the post-merger star is continued until just before iron-core collapse. Of the 84 pre-supernova models (16 M⊙ − 23 M⊙) computed, the majority of the pre-supernova models are compact, hot BSGs with effective temperature >12 kK and 30 R⊙ − 70 R⊙ of which six match nearly all the observational properties of Sk –69 °202.


Sign in / Sign up

Export Citation Format

Share Document