Effect of culture conditions on the growth rate and lipid production of microalgae Nannochloropsis gaditana

2013 ◽  
Vol 5 (6) ◽  
pp. 063138 ◽  
Author(s):  
Ming Ren ◽  
Kimberly Ogden ◽  
Bo Lian
2003 ◽  
Vol 69 (9) ◽  
pp. 5685-5689 ◽  
Author(s):  
Joseph O. Falkinham

ABSTRACT The susceptibility of representative strains of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum (the MAIS group) to chlorine was studied to identify factors related to culture conditions and growth phase that influenced susceptibility. M. avium and M. intracellulare strains were more resistant to chlorine than were strains of M. scrofulaceum. Transparent and unpigmented colony variants were more resistant to chlorine than were their isogenic opaque and pigmented variants (respectively). Depending on growth stage and growth rate, MAIS strains differed in their chlorine susceptibilities. Cells from strains of all three species growing in early log phase at the highest growth rates were more susceptible than cells in log and stationary phase. Rapidly growing cells were more susceptible to chlorine than slowly growing cells. The chlorine susceptibility of M. avium cells grown at 30°C was increased when cells were exposed to chlorine at 40°C compared to susceptibility after exposure at 30°C. Cells of M. avium grown in 6% oxygen were significantly more chlorine susceptible than cells grown in air. Chlorine-resistant MAIS strains were more hydrophobic and resistant to Tween 80, para-nitrobenzoate, hydroxylamine, and nitrite than were the chlorine-sensitive strains.


Biology ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 5 ◽  
Author(s):  
Jorijn H. Janssen ◽  
René H. Wijffels ◽  
Maria J. Barbosa

The microalga Nannochloropsis gaditana is a natural producer of triacylglycerol (TAG) and the omega-3 fatty acid eicosapentaenoic acid (EPA). TAG accumulation is induced by nitrogen starvation. The biomass-specific photon supply rate used had an effect on EPA and TAG accumulation during nitrogen starvation as well as on the localization of EPA accumulation. Clear differences in TAG yield on light were found for different biomass-specific photon supply rates and light regimes during nitrogen starvation. De novo EPA synthesis or the translocation of EPA between lipid fractions might be limiting for EPA accumulation in TAG. Further studies are needed to fully understand EPA accumulation in TAG during nitrogen starvation. To elucidate the function of EPA in TAG nitrogen recovery, experiments are suggested. The overexpression of genes involved in de novo EPA synthesis and translocation is proposed to elucidate the exact metabolic routes involved in these processes during nitrogen starvation. This work addresses future opportunities to increase EPA accumulation.


1963 ◽  
Vol 17 (2) ◽  
pp. 299-313 ◽  
Author(s):  
George J. Todaro ◽  
Howard Green

Disaggregated mouse embryo cells, grown in monolayers, underwent a progressive decline in growth rate upon successive transfer, the rapidity of the decline depending, among other things, on the inoculation density. Nevertheless, nearly all cultures developed into established lines within 3 months of culture. The first sign of the emergence of an established line was the ability of the cells to maintain a constant or rising potential growth rate. This occurred while the cultures were morphologically unchanged. The growth rate continued to increase until it equaled or exceeded that of the original culture. The early established cells showed an increasing metabolic autonomy, as indicated by decreasing dependence on cell-to-cell feeding. It is suggested that the process of establishment involves an alteration in cell permeability properties. Chromosome studies indicated that the cells responsible for the upturn in growth rate were diploid, but later the population shifted to the tetraploid range, often very rapidly. Still later, marker chromosomes appeared. Different lines acquired different properties, depending on the culture conditions employed; one line developed which is extremely sensitive to contact inhibition.


2020 ◽  
Vol 2 (2) ◽  
pp. 22-29
Author(s):  
Bendadeche Medjahed Faiza

Contamination by petroleum hydrocarbons causes serious dangers to human health and the environment, whether by accidental or chronic contamination. Due to the large flow of ships, the commercial harbor of Oran is subject to pollution particularly by polycyclic aromatic hydrocarbons. For that, bioremediation by indigenous microorganisms is the most important method to eliminate or decrease this contamination. In the present paper, hydrocarbon-degrading bacterium strain SP57N has been studied, newly isolated from contaminated marine sediments and sea water from the harbor of Oran (Northwestern-Algeria), using of Bushnell-Hass salt medium (BHSM). The strain SP57N was Gram-negative, oxidase negative, catalase negative, motile, Rod-shaped bacteria, identified molecularly as Pseudomonas mendocina based on partial 16S rDNA gene sequence analysis, using the BLAST program on National Centre for Biotechnology Information (NCBI) and the EzBioCloud 16S rDNA databases. This isolate could growth on high concentrations of crude oil (up to 10 %, v/v). The effects of some culture conditions such as temperature, NaCl concentration and pH on growth rate of strain SP57N on crude oil as the sole carbon and energy source were studied. In addition, growth kinetic of this isolate on crude oil during 20 days of culture at 140 rpm, under optimal culture conditions was considered. The results showed maximum growth rate at temperature 25°C, 3% (w/v) of NaCl concentration and pH 7. Results of growth kinetic on crude oil as sole carbon and energy source showed that the stationary phase was attained at day 12. Thus, Pseudomonas mendocina SP57N had effectively hydrocarbon-degrading potential, and could be used as an efficacy degrader to initiate a biological eco-friendly method for the bioremediation of the hydrocarbon pollution on the port of Oran, and marine environment.


Sign in / Sign up

Export Citation Format

Share Document