Plasma density accumulation on a conical surface for diffusion along a diverging magnetic field

2014 ◽  
Vol 21 (4) ◽  
pp. 043502 ◽  
Author(s):  
S. K. Saha ◽  
S. Chowdhury ◽  
M. S. Janaki ◽  
A. Ghosh ◽  
A. K. Hui ◽  
...  
2004 ◽  
Vol 14 (03) ◽  
pp. 393-415 ◽  
Author(s):  
CHRISTOPHE BESSE ◽  
PIERRE DEGOND ◽  
FABRICE DELUZET ◽  
JEAN CLAUDEL ◽  
GÉRARD GALLICE ◽  
...  

This paper deals with the modeling of the ionospheric plasma. Starting from the two-fluid Euler–Maxwell equations, we present two hierarchies of models. The MHD hierarchy deals with large plasma density situations while the dynamo hierarchy is adapted to lower density situations. Most of the models encompassed by the dynamo hierarchy are classical ones, but we shall give a unified presentation of them which brings a new insight into their interrelations. By contrast, the MHD hierarchy involves a new (at least to the authors) model, the massless-MHD model. This is a diffusion system for the density and magnetic field which could be of great practical interest. Both hierarchies terminate with the "classical" Striation model, which we shall investigate in detail.


1961 ◽  
Vol 122 (6) ◽  
pp. 1663-1674 ◽  
Author(s):  
E. E. Salpeter

2018 ◽  
Vol 45 (16) ◽  
pp. 8104-8110 ◽  
Author(s):  
W. M. Farrell ◽  
L. Z. Hadid ◽  
M. W. Morooka ◽  
W. S. Kurth ◽  
J.‐E. Wahlund ◽  
...  

2007 ◽  
Vol 25 (4) ◽  
pp. 905-914 ◽  
Author(s):  
M. Volwerk ◽  
K. Khurana ◽  
M. Kivelson

Abstract. The Galileo magnetometer data are used to investigate the structure of the Alfvén wing during three flybys of Europa. The presence of an induced magnetic field is shown to shrink the cross section of the Alfvén wing and offset it along the direction radial to Jupiter. Both the shrinkage and the offset depend on the strength of the induced field. The entry and exit points of the spacecraft into and out of the Alfvén wings are modeled to determine the angle between the wings and the background magnetic field. Tracing of the Alfvén characteristics in a model magnetic field consisting of Jupiter's background field and an induced field in Europa produces an offset and shrinking of the Alfvén wing consistent with the geometric modeling. Thus we believe that the Alfvén wing properties have been determined correctly. The Alfvén wing angle is directly proportional to the local Alfvén velocity, and is thus a probe for the local plasma density. We show that the inferred plasma density can be understood in terms of the electron density measured by the plasma wave experiment. When Europa is located in the Jovian plasma sheet the derived mass-per-charge exceeds the previous estimates, which is a result of increased pickup of sputtered ions near the moon. The estimated rate of O2+ pickup agrees well with the results from numerical models.


1979 ◽  
Vol 18 (11) ◽  
pp. 2121-2125 ◽  
Author(s):  
Yoshihumi Itō ◽  
Ken Kawasaki ◽  
Tadashi Ōgo ◽  
Tomiaki Kurokawa ◽  
Toshiatsu Oda

2012 ◽  
Vol 8 (S294) ◽  
pp. 589-590
Author(s):  
Sijie Yu ◽  
Yihua Yan ◽  
Baolin Tan

AbstractWe investigated the variations of 74 microwave ZP structures observed by Chinese Solar Broadband Radio Spectrometer at 2.6–3.8 GHz in 9 solar flares, found that the ratio between the plasma density scale height LN and the magnetic field scale height LB in emission source displays a tendency of decrease during the flaring process, indicates that LB increases faster than the LN during solar flares. The detailed analysis of the step-wise decrease of LN/LB in three typical X-class flares reveals the magnetic field relaxation relative to the plasma density.


Sign in / Sign up

Export Citation Format

Share Document