A MODEL HIERARCHY FOR IONOSPHERIC PLASMA MODELING

2004 ◽  
Vol 14 (03) ◽  
pp. 393-415 ◽  
Author(s):  
CHRISTOPHE BESSE ◽  
PIERRE DEGOND ◽  
FABRICE DELUZET ◽  
JEAN CLAUDEL ◽  
GÉRARD GALLICE ◽  
...  

This paper deals with the modeling of the ionospheric plasma. Starting from the two-fluid Euler–Maxwell equations, we present two hierarchies of models. The MHD hierarchy deals with large plasma density situations while the dynamo hierarchy is adapted to lower density situations. Most of the models encompassed by the dynamo hierarchy are classical ones, but we shall give a unified presentation of them which brings a new insight into their interrelations. By contrast, the MHD hierarchy involves a new (at least to the authors) model, the massless-MHD model. This is a diffusion system for the density and magnetic field which could be of great practical interest. Both hierarchies terminate with the "classical" Striation model, which we shall investigate in detail.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ricardo Gutiérrez ◽  
Massimo Materassi ◽  
Stefano Focardi ◽  
Stefano Boccaletti

AbstractWe consider networks of dynamical units that evolve in time according to different laws, and are coupled to each other in highly irregular ways. Studying how to steer the dynamics of such systems towards a desired evolution is of great practical interest in many areas of science, as well as providing insight into the interplay between network structure and dynamical behavior. We propose a pinning protocol for imposing specific dynamic evolutions compatible with the equations of motion on a networked system. The method does not impose any restrictions on the local dynamics, which may vary from node to node, nor on the interactions between nodes, which may adopt in principle any nonlinear mathematical form and be represented by weighted, directed or undirected links. We first explore our method on small synthetic networks of chaotic oscillators, which allows us to unveil a correlation between the ordered sequence of pinned nodes and their topological influence in the network. We then consider a 12-species trophic web network, which is a model of a mammalian food web. By pinning a relatively small number of species, one can make the system abandon its spontaneous evolution from its (typically uncontrolled) initial state towards a target dynamics, or periodically control it so as to make the populations evolve within stipulated bounds. The relevance of these findings for environment management and conservation is discussed.


Author(s):  
K Gwirtz ◽  
M Morzfeld ◽  
A Fournier ◽  
G Hulot

Summary We study predictions of reversals of Earth’s axial magnetic dipole field that are based solely on the dipole’s intensity. The prediction strategy is, roughly, that once the dipole intensity drops below a threshold, then the field will continue to decrease and a reversal (or a major excursion) will occur. We first present a rigorous definition of an intensity threshold-based prediction strategy and then describe a mathematical and numerical framework to investigate its validity and robustness in view of the data being limited. We apply threshold-based predictions to a hierarchy of numerical models, ranging from simple scalar models to 3D geodynamos. We find that the skill of threshold-based predictions varies across the model hierarchy. The differences in skill can be explained by differences in how reversals occur: if the field decreases towards a reversal slowly (in a sense made precise in this paper), the skill is high, and if the field decreases quickly, the skill is low. Such a property could be used as an additional criterion to identify which models qualify as Earth-like. Applying threshold-based predictions to Virtual Axial Dipole Moment (VADM) paleomagnetic reconstructions (PADM2M and Sint-2000) covering the last two million years, reveals a moderate skill of threshold-based predictions for Earth’s dynamo. Besides all of their limitations, threshold-based predictions suggests that no reversal is to be expected within the next 10 kyr. Most importantly, however, we show that considering an intensity threshold for identifying upcoming reversals is intrinsically limited by the dynamic behavior of Earth’s magnetic field.


2014 ◽  
Vol 21 (4) ◽  
pp. 043502 ◽  
Author(s):  
S. K. Saha ◽  
S. Chowdhury ◽  
M. S. Janaki ◽  
A. Ghosh ◽  
A. K. Hui ◽  
...  

1982 ◽  
Vol 28 (1) ◽  
pp. 93-101
Author(s):  
Sanjay Kumar Ghosh

Starting from the two-fluid model hydrodynamic equations, a dispersion relation is obtained for wave propagation through a two-temperature plasma perpendicular to the direction of the spatially uniform external magnetic field B0cosω0t and several excitation conditions are deduced.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
O. V. Mingalev ◽  
G. I. Mingaleva ◽  
M. N. Melnik ◽  
V. S. Mingalev

Dynamics of magnetic field-aligned small-scale irregularities in the electron concentration, existing in the F-layer ionospheric plasma, is investigated with the help of a mathematical model. The plasma is assumed to be a rarefied compound consisting of electrons and positive ions and being in a strong, external magnetic field. In the applied model, kinetic processes in the plasma are simulated by using the Vlasov-Poisson system of equations. The system of equations is numerically solved applying a macroparticle method. The time evolution of a plasma irregularity, having initial cross-section dimension commensurable with a Debye length, is simulated during the period sufficient for the irregularity to decay completely. The results of simulation indicate that the small-scale irregularity, created initially in the F-region ionosphere, decays accomplishing periodic damped vibrations, with the process being collisionless.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 687-695 ◽  
Author(s):  
B. J. AHMEDOV ◽  
A. V. KHUGAEV ◽  
N. I. RAKHMATOV

We present analytic solutions of Maxwell equations for infinitely long cylindrical conductors with nonvanishing electric charge and currents in the external background spacetime of a line gravitomagnetic monopole. It has been shown that vertical magnetic field arising around cylindrical conducting shell carrying azimuthal current will be modified by the gravitational field of NUT source. We obtain that the purely general relativistic magnetic field which has no Newtonian analog will be produced around charged gravitomagnetic monopole.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhenlin Wei ◽  
Dejie Jiao ◽  
Junxiao Xu

Magnetic field treatments have been utilized to promote germination and growth of a variety of species of plants; however the mechanism of concern has not been fully elucidated. In this research, wheat seedlings were treated with 500 mT and 1500 mT static magnetic field (SMF) for 10 and 20 min, respectively. Analyzing Fourier transform infrared spectra collected from leaves of seedlings showed that SMF treatments decreased the contents of lipids and proteins, shifted bands to higher wavenumbers in 3000–2800 cm−1regions, and increased the ratio of CH2/CH3which likely indicates a structural variation of lipids. For bands assigned to different second structures of proteins, slight bands shifting and changing the ratio of different second structures of proteins were observed due to SMF treatments. To summarize, the results revealed that lipids rather than proteins were sensitive to SMF treatments. The results provided insight into the SMF induced conformational changes of lipids and proteins in wheat leaves, which will help elucidate the biological mechanisms of SMF on plant growth and development.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Syeda Noureen

Abstract On employing linearized Vlasov–Maxwell equations the solution of relativistic electromagnetic extraordinary mode is investigated for the wave propagating perpendicular to a uniform ambient magnetic field (in the presence of arbitrary magnetic field limit i.e., ω > Ω > k.v) in partially degenerate (i.e., for T F ≥ T and T ≠ 0) electron plasma under long wavelength limit (ω ≫ k.v). Due to the inclusion of weak quantum degeneracy the relativistic Fermi–Dirac distribution function is expanded under the relativistic limit ( m 0 2 c 2 2 p 2 < 1 $\frac{{m}_{0}^{2}{c}^{2}}{2{p}^{2}}{< }1$ ) to perform momentum integrations which generate the Polylog functions. The propagation characteristics and shifting of cutoff points of the extraordinary mode are examined in different relativistic density and magnetic field ranges. The novel graphical results of extraordinary mode in relativistic quantum partially degenerate (for μ T = 0 $\frac{\mu }{T}=0$ ), nondegenerate (for μ T ≈ − 1 $\frac{\mu }{T}\approx -1$ ) and fully/completely degenerate (for μ T ≈ $\frac{\mu }{T}\approx $ 1) environments are obtained and the previously reported results are retraced as well.


2014 ◽  
Vol 32 (10) ◽  
pp. 1207-1216 ◽  
Author(s):  
P. Janhunen

Abstract. Plasma brake is a thin, negatively biased tether that has been proposed as an efficient concept for deorbiting satellites and debris objects from low Earth orbit. We simulate the interaction with the ionospheric plasma ram flow with the plasma-brake tether by a high-performance electrostatic particle in cell code to evaluate the thrust. The tether is assumed to be perpendicular to the flow. We perform runs for different tether voltage, magnetic-field orientation and plasma-ion mass. We show that a simple analytical thrust formula reproduces most of the simulation results well. The interaction with the tether and the plasma flow is laminar (i.e. smooth and not turbulent) when the magnetic field is perpendicular to the tether and the flow. If the magnetic field is parallel to the tether, the behaviour is unstable and thrust is reduced by a modest factor. The case in which the magnetic field is aligned with the flow can also be unstable, but does not result in notable thrust reduction. We also correct an error in an earlier reference. According to the simulations, the predicted thrust of the plasma brake is large enough to make the method promising for low-Earth-orbit (LEO) satellite deorbiting. As a numerical example, we estimate that a 5 km long plasma-brake tether weighing 0.055 kg could produce 0.43 mN breaking force, which is enough to reduce the orbital altitude of a 260 kg object mass by 100 km over 1 year.


Sign in / Sign up

Export Citation Format

Share Document