An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis

2014 ◽  
Vol 85 (5) ◽  
pp. 055116 ◽  
Author(s):  
Scott M. Geyer ◽  
Rungthiwa Methaapanon ◽  
Richard W. Johnson ◽  
Woo-Hee Kim ◽  
Douglas G. Van Campen ◽  
...  
2016 ◽  
Vol 316 ◽  
pp. 160-169 ◽  
Author(s):  
Nicholas David Schuppert ◽  
Santanu Mukherjee ◽  
Alex M. Bates ◽  
Eun-Jin Son ◽  
Moon Jong Choi ◽  
...  

2011 ◽  
Vol 11 (2) ◽  
pp. 1577-1580 ◽  
Author(s):  
Yong Jun Park ◽  
Dong Ryeol Lee ◽  
Hyun Hwi Lee ◽  
Han-Bo-Ram Lee ◽  
Hyungjun Kim ◽  
...  

2007 ◽  
Vol 990 ◽  
Author(s):  
Sung-Hoon Chung ◽  
Vladislav Vasilyev ◽  
Evgeni Gorokhov ◽  
Yong-Won Song ◽  
Hyuk-Kyoo Jang

ABSTRACTWe investigated effects of thermal annealing on Ru films deposited on the 8 inch Si substrates using a volatile liquid-phase Ru precursor, tricarbonyl-1,3-cyclohexadienyl ruthenium (Ru(CO)3(C6H8)) by an atomic layer deposition (ALD) technique. Structural and electrical properties of the films were characterized by scanning probe microscopy, X-ray diffractometry, sheet resistance. Grazing incidence X-ray diffraction (GIXRD) patterns show typical Ru hexagonal polycrystalline peaks as annealing temperature was increased. At the highest annealing temperature condition, Ta = 700 °C electrical resistivity become 6 times less than in as-deposited films.


2022 ◽  
Vol 93 (1) ◽  
pp. 013905
Author(s):  
E. Kokkonen ◽  
M. Kaipio ◽  
H.-E. Nieminen ◽  
F. Rehman ◽  
V. Miikkulainen ◽  
...  

2010 ◽  
Vol 97 (19) ◽  
pp. 191904 ◽  
Author(s):  
D. D. Fong ◽  
J. A. Eastman ◽  
S. K. Kim ◽  
T. T. Fister ◽  
M. J. Highland ◽  
...  

2017 ◽  
Vol 419 ◽  
pp. 107-113 ◽  
Author(s):  
Konstantin V. Egorov ◽  
Yury Yu. Lebedinskii ◽  
Anatoly A. Soloviev ◽  
Anastasia A. Chouprik ◽  
Alexander Yu. Azarov ◽  
...  

2007 ◽  
Vol 22 (12) ◽  
pp. 3455-3464 ◽  
Author(s):  
Rajesh Katamreddy ◽  
Ronald Inman ◽  
Gregory Jursich ◽  
Axel Soulet ◽  
Christos Takoudis

Tetrakis-diethylamino hafnium (TDEAH), tris-diethylamino aluminum (TDEAA), and ozone were used for the atomic layer deposition (ALD) of HfO2, Al2O3, and HfAlOx films. The ALD rates were measured to be 1.1 Å/cycle for HfO2 and 1.3 Å/cycle for Al2O3. The ALD temperature windows were found to be between 200 and 325 °C for TDEAA, and between 200 and 275 °C for TDEAH. The overlap of these ALD windows between 200 and 275 °C is critical for ALD of the composite film, HfAlOx. In addition to the overlapping ALD temperature windows, the two metal precursors have similar thermal characteristics, as shown by TGA and differential scanning calorimetry. As-deposited films and films postannealed at 600 and 800 °C films were analyzed using Fourier transformed infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy, and x-ray diffraction (XRD) techniques. FTIR spectra revealed interfacial oxide growth during deposition of both HfO2 and Al2O3 whose thickness increased with annealing temperature. The FTIR data also indicated hydroxyl and nitrate groups in the films; these species were removed after annealing in Ar at a temperature of ⩾600 °C. Both FTIR and XRD results indicated the crystallization of pure HfO2 after annealing at temperatures as low as 600 °C. On the other hand, pure Al2O3 remained amorphous after annealing at temperatures up to 800 °C. XRD data of the composite HfAlOx film show that films deposited by alternating five cycles of HfO2 and one cycle of Al2O3 remained amorphous after annealing at 600 °C. Rutherford backscattering analysis of HfAlOx deposited with a varied number of alternating HfO2 and Al2O3 cycles demonstrated a strong correlation between the cyclic dosage of TDEAA and TDEAH and the film composition.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1505
Author(s):  
José Rosa ◽  
Mikko J. Heikkilä ◽  
Mika Sirkiä ◽  
Saoussen Merdes

Y2O3:Eu is a promising red-emitting phosphor owing to its high luminance efficiency, chemical stability, and non-toxicity. Although Y2O3:Eu thin films can be prepared by various deposition methods, most of them require high processing temperatures in order to obtain a crystalline structure. In this work, we report on the fabrication of red Y2O3:Eu thin film phosphors and multilayer structure Y2O3:Eu-based electroluminescent devices by atomic layer deposition at 300 °C. The structural and optical properties of the phosphor films were investigated using X-ray diffraction and photoluminescence measurements, respectively, whereas the performance of the fabricated device was evaluated using electroluminescence measurements. X-ray diffraction measurements show a polycrystalline structure of the films whereas photoluminescence shows emission above 570 nm. Red electroluminescent devices with a luminance up to 40 cd/m2 at a driving frequency of 1 kHz and an efficiency of 0.28 Lm/W were achieved.


Sign in / Sign up

Export Citation Format

Share Document