The instability condition of the aperiodic ordinary mode for new scalings of the counterstreaming parameters

2015 ◽  
Vol 22 (2) ◽  
pp. 022129 ◽  
Author(s):  
S. Vafin ◽  
M. Lazar ◽  
R. Schlickeiser
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Changsheng Dou ◽  
Jialiang Wang ◽  
Weiwei Wang

AbstractWe investigate the effect of (interface) surface tensor on the linear Rayleigh–Taylor (RT) instability in stratified incompressible viscous fluids. The existence of linear RT instability solutions with largest growth rate Λ is proved under the instability condition (i.e., the surface tension coefficient ϑ is less than a threshold $\vartheta _{\mathrm{c}}$ ϑ c ) by the modified variational method of PDEs. Moreover, we find a new upper bound for Λ. In particular, we directly observe from the upper bound that Λ decreasingly converges to zero as ϑ goes from zero to the threshold $\vartheta _{\mathrm{c}}$ ϑ c .


1997 ◽  
Vol 41 ◽  
pp. 509-514
Author(s):  
Hitoshi IKENAGA ◽  
Tadashi YAMADA ◽  
Kunihide UCHIJIMA ◽  
Masahiro KASAI ◽  
Kimihito MUKOUYAMA ◽  
...  

1993 ◽  
Vol 5 (12) ◽  
pp. 4299-4311 ◽  
Author(s):  
Gary R. Smith ◽  
Daniel R. Cook ◽  
Allan N. Kaufman ◽  
Arnold H. Kritz ◽  
Steven W. McDonald

2009 ◽  
Vol 27 (12) ◽  
pp. 4379-4389 ◽  
Author(s):  
K. Stasiewicz ◽  
C. Z. Cheng

Abstract. Cluster measurements in the magnetosheath with spacecraft separations of 2000 km indicate that magnetic pulsations interpreted as mirror mode structures are not frozen in plasma flow, but do propagate with speeds of up to ~50 km/s. Properties of these pulsations are shown to be consistent with propagating slow magnetosonic solitons. By using nonlinear two fluid theory we demonstrate that the well known classical mirror instability condition corresponds to a small subset in a continuum of exponentially varying solutions. With the measured plasma moments we have determined parameters of the polybaric pressure model in the region of occurrence of mirror type structures and applied it to numerical modelling of these structures. In individual cases we obtain excellent agreement between observed mirror mode structures and numerical solutions for magnetosonic solitons.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1557
Author(s):  
Liang Wang ◽  
Lidia Bressan ◽  
Stefano Tinti

Coastal boulders transported inland by marine hazards, such as tsunamis and storms, are commonly found worldwide. Studies on the transport process of coastal boulders contribute to the understanding of a wide range of phenomena such as high-energy flow events, fluid-structure interaction, and coastal sediments. Consequently, it is crucial to understand how boulders move, but even more important to determine the instability condition for boulder transport. The hydrodynamic formulas including drag and lift coefficients are widely used to predict the incipient motion of boulders while few studies are conducted to evaluate the capability of these formulas. Recently, a series of laboratory experiments carried out at the Hydraulic Engineering Laboratory (Italian acronym LIDR) of the University of Bologna, Italy, revealed that boulders can start moving when the flow height and flow velocity are lower than the theoretical threshold computed by hydraulic formulas. In this paper, we use a numerical shallow water model to reproduce these freely available laboratory data with the aim of testing the capability of the model in capturing the main evolution of the process, and of casting new light on the instability condition of coastal boulders.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Mario Rosario Chiarelli ◽  
Salvatore Bonomo

The results of numerical studies carried out on high-aspect-ratio wings with different planforms are discussed: the transonic regime is analysed for a swept wing and a curved planform wing. The wings have similar aspect ratios and similar aerodynamic profiles. The analyses were carried out by CFD and FE techniques, and the reliability of the numerical aerodynamic results was proven by a sensitivity study. Analysing the performances of the two wings demonstrated that in transonic flight conditions, a noticeable drag reduction can be obtained by adopting a curved planform wing. In addition, for such a wing, the aeroelastic instability condition, consisting in a classical flutter, is postponed compared to a conventional swept wing, for which a flutter-buffet instability occurs. In a preliminary manner, the study shows that, for a curved planform wing, the high speed buffet is not an issue and at the same time notable fuel saving can be achieved.


Sign in / Sign up

Export Citation Format

Share Document