Effect of adhesion transfer on the surface pattern regularity in nanostructuring burnishing

Author(s):  
Viktor P. Kuznetsov ◽  
Sergey Yu. Tarasov ◽  
Anton Yu. Nikonov ◽  
Andrey V. Filippov ◽  
Vladimir V. Voropaev ◽  
...  
Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Geology ◽  
2020 ◽  
Author(s):  
C.R. Woltz ◽  
S.M. Porter ◽  
H. Agić ◽  
C.M. Dehler ◽  
C.K. Junium ◽  
...  

Much of our understanding of early eukaryote diversity and paleoecology comes from the record of organic-walled microfossils in shale, yet the conditions controlling their preservation are not well understood. It has been suggested that high concentrations of total organic carbon (TOC) inhibit the preservation of organic fossils in shale, and although this idea is supported anecdotally, it has never been tested. Here we compared the presence, preservational quality, and assemblage diversity of organic-walled microfossils to TOC concentrations of 346 shale samples that span the late Paleoproterozoic to middle Neoproterozoic in age. We found that fossil-bearing samples have significantly lower median TOC values (0.32 wt%, n = 189) than those containing no fossils (0.72 wt%, n = 157). Preservational quality, measured by the loss of surface pattern, density of pitting, and deterioration of wall margin, decreases as TOC increases. Species richness negatively correlates with TOC within the ca. 750 Ma Chuar Group (Arizona, USA), but no relationship is observed in other units. These results support the hypothesis that high TOC content either decreases the preservational quality or inhibits the preservation of organic-walled microfossils altogether. However, it is also possible that other causal factors, including sedimentation rate and microbial degradation, account for the correlation between fossil preservation and TOC. We expect that as TOC varies in space and time, so too does the probability of finding well-preserved fossils. A compilation of 13,940 TOC values spanning Earth history suggests significantly higher median TOC levels in Mesoproterozoic versus Neoproterozoic shale, potentially biasing the interpreted pattern of increased eukaryotic diversity in the Tonian.


Zootaxa ◽  
2019 ◽  
Vol 4647 (1) ◽  
pp. 378-384
Author(s):  
WATARU HAGINO ◽  
SATOSHI SHIMANO

A species of oribatid mites, Pergalumna amamiensis was collected from Amami-Ohshima Island, Ishigaki Island, and Okinawa Island, Southwestern Japan. The specimens were studied in detail, and supplementary descriptions are provided; these include features of the rostrum, the subcapitulum and the surface pattern of pteromorphs. The main morphological traits for this species are summarized as follows; body length 519–570 μm, body width 363–410 μm, rostral tip pointed, sensillus with a long stalk covered by minute barbs, porose areas Aa bulbous, porose areas A1, A2, and A3 circular, surface of pteromorphs ornamented by fine granular structure and dense wrinkles, fine granular structure on prodorsum, subcapitulum, genital plates and anal plates, median pore on the notogaster represented as single pore. 


2009 ◽  
Vol 7 (suppl_1) ◽  
Author(s):  
Rakesh Kumar Harishchandra ◽  
Mohammed Saleem ◽  
Hans-Joachim Galla

One of the most important functions of the lung surfactant monolayer is to form the first line of defence against inhaled aerosols such as nanoparticles (NPs), which remains largely unexplored. We report here, for the first time, the interaction of polyorganosiloxane NPs (AmorSil20: 22 nm in diameter) with lipid monolayers characteristic of alveolar surfactant. To enable a better understanding, the current knowledge about an established model surface film that mimics the surface properties of the lung is reviewed and major results originating from our group are summarized. The pure lipid components dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol have been used to study the biophysical behaviour of their monolayer films spread at the air–water interface in the presence of NPs. Film balance measurements combined with video-enhanced fluorescence microscopy have been used to investigate the formation of domain structures and the changes in the surface pattern induced by NPs. We are able to show that NPs are incorporated into lipid monolayers with a clear preference for defect structures at the fluid–crystalline interface leading to a considerable monolayer expansion and fluidization. NPs remain at the air–water interface probably by coating themselves with lipids in a self-assembly process, thereby exhibiting hydrophobic surface properties. We also show that the domain structure in lipid layers containing surfactant protein C, which is potentially responsible for the proper functioning of surfactant material, is considerably affected by NPs.


Development ◽  
1992 ◽  
Vol 115 (1) ◽  
pp. 319-335 ◽  
Author(s):  
M. Jerka-Dziadosz ◽  
N. Garreau de Loubresse ◽  
J. Beisson

kin241 is a monogenic nuclear recessive mutation producing highly pleiotropic effects on cell size and shape, generation time, thermosensitivity, nuclear reorganization and cortical organization. We have analyzed the nature of the cortical disorders and their development during division, using various specific antibodies labelling either one of the cortical cytoskeleton components, as was previously done for analysis of cortical pattern formation in the wild type. Several abnormalities in basal body properties were consistently observed, although with a variable frequency: extra microtubules in either the triplets or in the lumen; nucleation of a second kinetodesmal fiber; abnormal orientation of the newly formed basal body with respect to the mother one. The latter effect seems to account for the major observed cortical disorders (reversal, intercalation of supplementary ciliary rows). The second major effect of the mutation concerns the spatiotemporal map of cortical reorganization during division. Excess basal body proliferation occurs and is correlated with modified boundaries of some of the cortical domains identified in the wild type on the basis of their basal body duplication pattern. This is the first mutant described in a ciliate in which both the structure and duplication of basal bodies and the body plan are affected. The data support the conclusion that the mutation does not alter the nature of the morphogenetic signal(s) which pervade the dividing cell, nor the competence of cytoskeletal structures to respond to signalling, but affects the local interpretation of the signals.


Sign in / Sign up

Export Citation Format

Share Document