Heat and mass transfer for natural convection MHD flow over a permeable moving vertical plate with convective boundary condition in the presence of viscous dissipation

2017 ◽  
Author(s):  
Stanford Shateyi
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reda G. Abdel-Rahman

An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.


Author(s):  
Abiodun O. Ajibade ◽  
Tafida M. Kabir

Abstract The present article explores the effect of viscous dissipation on steady natural convection Couette flow subject to convective boundary condition. Due to the nonlinearity and coupling of the governing equations in the present situation, the homotopy perturbation method was employed to obtain the solutions of the energy and momentum equations. The impacts of the controlling parameters were investigated and discussed graphically. In the course of investigation, it was found that fluid temperature increases with an increase in viscous dissipation while the reverse trend was observed in fluid velocity. However, it was also discovered that heat generation leads to a decrease in the rate of heat transfer on the heated plate and it increases on the cold plate. Finally, it was concluded that the velocity boundary layer thickness increases with an increase in Biot number.


Sign in / Sign up

Export Citation Format

Share Document