Thermal degradation and fire properties of epoxy modified resins

Author(s):  
Giuseppina Barra ◽  
Luigi Vertuccio ◽  
Carlo Naddeo ◽  
Maurizio Arena ◽  
Massimo Viscardi ◽  
...  
Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2648 ◽  
Author(s):  
Kuruma Malkappa ◽  
Jayita Bandyopadhyay ◽  
Suprakas Ray

Polylactide (PLA) is one of the most widely used organic bio-degradable polymers. However, it has poor flame retardancy characteristics. To address this disadvantage, we performed melt-blending of PLA with intumescent flame retardants (IFRs; melamine phosphate and pentaerythritol) in the presence of organically modified montmorillonite (OMMT), which resulted in nanobiocomposites with excellent intumescent char formation and improved flame retardant characteristics. Triphenyl benzyl phosphonium (OMMT-1)- and tributyl hexadecyl phosphonium (OMMT-2)-modified MMTs were used in this study. Thermogravimetric analysis in combination with Fourier transform infrared spectroscopy showed that these nanocomposites release a smaller amount of toxic gases during thermal degradation than unmodified PLA. Melt-rheological behaviors supported the conclusions drawn from the cone calorimeter data and char structure of the various nanobiocomposites. Moreover, the characteristic of the surfactant used for the modification of MMT played a crucial role in controlling the fire properties of the composites. For example, the nanocomposite containing 5 wt.% OMMT-1 showed significantly improved fire properties with a 47% and 68% decrease in peak heat and total heat release rates, respectively, as compared with those of unmodified PLA. In summary, melt-blending of PLA, IFR, and OMMT has potential in the development of high-performance PLA-based sustainable materials.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Mitchell Jones ◽  
Tanmay Bhat ◽  
Everson Kandare ◽  
Ananya Thomas ◽  
Paul Joseph ◽  
...  

1981 ◽  
Vol 42 (C1) ◽  
pp. C1-301-C1-307
Author(s):  
I. T. Ritchie ◽  
J. Spitz
Keyword(s):  

Author(s):  
Sh.M. Rakhimbayev ◽  
◽  
T.V. Anikanova ◽  
I.M. Kolesnikov ◽  
◽  
...  

2016 ◽  
Vol 38 (4) ◽  
pp. 302-306
Author(s):  
V.V. Boyko ◽  
◽  
O.A. Radchenko ◽  
S.V. Riabov ◽  
S.I. Sinelnikov ◽  
...  

2013 ◽  
Vol 56 (4) ◽  
pp. 133-135
Author(s):  
Yuki IKEDA ◽  
Satoru IWAMORI ◽  
Hiroyuki MATSUMOTO ◽  
Kiyoshi YOSHINO ◽  
Itsuo NISHIYAMA ◽  
...  

Author(s):  
P. Singh ◽  
G.T. Galyon ◽  
J. Obrzut ◽  
W.A. Alpaugh

Abstract A time delayed dielectric breakdown in printed circuit boards, operating at temperatures below the epoxy resin insulation thermo-electrical limits, is reported. The safe temperature-voltage operating regime was estimated and related to the glass-rubber transition (To) of printed circuit board dielectric. The TG was measured using DSC and compared with that determined from electrical conductivity of the laminate in the glassy and rubbery state. A failure model was developed and fitted to the experimental data matching a localized thermal degradation of the dielectric and time dependency. The model is based on localized heating of an insulation resistance defect that under certain voltage bias can exceed the TG, thus, initiating thermal degradation of the resin. The model agrees well with the experimental data and indicates that the failure rate and truncation time beyond which the probability of failure becomes insignificant, decreases with increasing glass-rubber transition temperature.


Sign in / Sign up

Export Citation Format

Share Document