melting mechanism
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Shin-Pon Ju ◽  
Chen-Chun Li

Abstract The melting mechanism of single crystal and polycrystalline Nb 20.6 Mo 21.7 Ta 15.6 W 21.1 V 21.0 RHEAs was investigated by the molecular dynamics (MD) simulation using the 2NN MEAM potential. For the single crystal RHEA, the density profile displays an abrupt drop from 11.25 to 11.00 g/cm 3 at temperatures from 2910 to 2940 K, indicating all atoms begin significant local structural rearrangement. For polycrystalline RHEAs, a two-stage melting process is found. In the first melting stage, the melting of the grain boundary (GB) regions firstly occurs at the pre-melting temperature, which is relatively lower than the corresponding system-melting point. At the pre-melting temperature, most GB atoms have enough kinetic energies to leave their equilibrium positions, and then gradually induce the rearrangement of grain atoms close to GB. In the second melting stage at the melting point, most grain atoms have enough kinetic energies to rearrange, resulting in the chemical short-ranged order (CSRO) changes of all pairs.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1252
Author(s):  
Krzysztof J. Wilczyński ◽  
Kamila Buziak

In this study, we present a computer model of starve fed single screw extrusion of wood plastic composites (WPC). Experimental studies have been performed on the extrusion of the polypropylene (PP) based composites with various wood fiber contents (WF). The melting mechanisms of the composites in the extruder have been observed, and melting models have been proposed for partially and fully filled sections of the screw. It was observed that in the partially filled section the material is melted by conduction, as in the case of extrusion of neat polymers. On the other hand, in the fully filled section, the Tadmor melting mechanism appears, which is different compared to the melting mechanism of neat polymers at starve fed extrusion, where dispersed melting is observed. Using the melting models, the global computer model of the process has been developed which makes it possible to predict the process flow, i.e., the polymer melt temperature and pressure, the polymer melting rate, and the degree of screw filling. To build the model, the specific forward/backward procedure was developed, which consists in determining “forward” the melting profile, and “backward” the pressure and screw filling profile. The temperature profile in the melting section is computed “forward”, while “backward” in the metering section. This procedure makes it possible to solve the crucial problem of modeling of the starve fed extrusion process, which is to find the location of the point where the screw is fully filled, and the pressure is developed. The model has been tested by pressure measurements in the extruder.


Author(s):  
G. S. Shaikhova ◽  

There are results of the melts of semimetals and semiconductors of various structural groups research in the article. On the example of simplified regular Bethe lattice one can model destruction and aggregation of structures in clusters and on it’s basis to substantiate the metal melts properties in the form of nanolayers. The variety of compressibility polytherms forms in electronic melts requires typing, since their analysis makes it possible to explain the mechanism of the aggregation and dissolution processes of extended objects in melts. The article contains formulas that allow explaining the mechanism of the dissolution of cluster structures and their influence on the physicochemical nature of the molten state. There is considered the process of cluster fragmentation. Larger fragments of clusters are formed in the process of crushing, and this fact leads to the compressibility that decreases more rapidly, only after passing through the extremum it begins to increase due to the thermal loosening. The study of the function's compressibility for an extremum in the compressibility's temperature dependence also indicates the changing process of the clusters decomposition mechanisms in melts with an increase in temperature and vice versa to aggregation with a decrease in the melt temperature to the melting temperature.


2020 ◽  
Author(s):  
Bikash Kumar Shaw ◽  
Ashlea R. Hughes ◽  
Maxime Ducamp ◽  
David A. Keen ◽  
François-Xavier Coudert ◽  
...  

<p>Hybrid perovskites occupy a prominent position within solid-state materials chemistry due to their (e.g.) ionic transport, ferroelectric and multiferroic properties. Here we show that a series of [TPrA][M(Dca)<sub>3</sub>] perovskites (TPrA = tetrapropylammonium cation; Dca = dicyanamide anion; M = Mn, Fe, Co) melt below 300 °C. A combined experimental-computational approach reveal the melting mechanism, and demonstrates that the hybrid perovskites form glasses upon melt quenching which largely retain the inorganic-organic bonding of the crystalline phase. The very low thermal conductivities of these glasses (~ 0.2 W m<sup>-1</sup> K<sup>-1</sup>), moderate electrical conductivities (10<sup>-2</sup> – 10<sup>-4</sup> S m<sup>-1</sup>) and thermo-mechanical properties reminiscent of polymeric materials identify them as a new family of functional glass-formers.</p>


Author(s):  
Bikash Kumar Shaw ◽  
Ashlea R. Hughes ◽  
Maxime Ducamp ◽  
David A. Keen ◽  
François-Xavier Coudert ◽  
...  

<p>Hybrid perovskites occupy a prominent position within solid-state materials chemistry due to their (e.g.) ionic transport, ferroelectric and multiferroic properties. Here we show that a series of [TPrA][M(Dca)<sub>3</sub>] perovskites (TPrA = tetrapropylammonium cation; Dca = dicyanamide anion; M = Mn, Fe, Co) melt below 300 °C. A combined experimental-computational approach reveal the melting mechanism, and demonstrates that the hybrid perovskites form glasses upon melt quenching which largely retain the inorganic-organic bonding of the crystalline phase. The very low thermal conductivities of these glasses (~ 0.2 W m<sup>-1</sup> K<sup>-1</sup>), moderate electrical conductivities (10<sup>-2</sup> – 10<sup>-4</sup> S m<sup>-1</sup>) and thermo-mechanical properties reminiscent of polymeric materials identify them as a new family of functional glass-formers.</p>


2020 ◽  
Vol 10 (1) ◽  
pp. 65-78
Author(s):  
Bratati Das ◽  
Ashis Bhattacharjee

Background: Melting of a pure crystalline material is generally treated thermodynamically which disregards the dynamic aspects of the melting process. According to the kinetic phenomenon, any process should be characterized by activation energy and preexponential factor where these kinetic parameters are derivable from the temperature dependence of the process rate. Study on such dependence in case of melting of a pure crystalline solid gives rise to a challenge as such melting occurs at a particular temperature only. The temperature region of melting of pure crystalline solid cannot be extended beyond this temperature making it difficult to explore the temperature dependence of the melting rate and consequently the derivation of the related kinetic parameters. Objective: The present study aims to explore the mechanism of the melting process of maleic anhydride in the framework of phase transition models. Taking this process as just another first-order phase transition, occurring through the formation of nuclei of new phase and their growth, particular focus is on the nucleation and growth models. Methods: Non-isothermal thermogravimetry, as well as differential scanning calorimetry studies, has been performed. Using isoconversional kinetic analysis, temperature dependence of the activation energy of melting has been obtained. Nucleation and growth models have been utilized to obtain the theoretical temperature dependencies for the activation energy of melting and these dependencies are then compared with the experimentally estimated ones. Conclusion: The thermogravimetry study indicates that melting is followed by concomitant evaporation, whereas the differential scanning calorimetry study shows that the two processes appear in two different temperature regions, and these differences observed may be due to the applied experimental conditions. From the statistical analysis, the growth model seems more suitable than the nucleation model for the interpretation of the melting mechanism of the maleic anhydride crystals.


2019 ◽  
Vol 61 (7) ◽  
pp. 1246-1250
Author(s):  
L. A. Bulavin ◽  
Yu. F. Zabashta ◽  
L. Yu. Vergun

Sign in / Sign up

Export Citation Format

Share Document