Spin splittings from first-order symmetry-adapted perturbation theory without single-exchange approximation

2019 ◽  
Vol 150 (7) ◽  
pp. 074109 ◽  
Author(s):  
Jonathan M. Waldrop ◽  
Konrad Patkowski
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Kirill Krasnov ◽  
Yuri Shtanov

Abstract We describe a new perturbation theory for General Relativity, with the chiral first-order Einstein-Cartan action as the starting point. Our main result is a new gauge-fixing procedure that eliminates the connection-to-connection propagator. All other known first-order formalisms have this propagator non-zero, which significantly increases the combinatorial complexity of any perturbative calculation. In contrast, in the absence of the connection-to-connection propagator, our formalism leads to an effective description in which only the metric (or tetrad) propagates, there are only cubic and quartic vertices, but some vertex legs are special in that they cannot be connected by the propagator. The new formalism is the gravity analog of the well-known and powerful chiral description of Yang-Mills theory.


1975 ◽  
Vol 53 (23) ◽  
pp. 2590-2592
Author(s):  
J. Cejpek ◽  
J. Dobeš

The reaction processes in which a one-step transition is forbidden are analyzed from the point of view of the first order perturbation theory. The interference between two competing two-step reaction paths is found to be always constructive. A qualitative explanation of the experimentally observed reaction intensities is presented.


Author(s):  
D. Semkat ◽  
H. Fehske ◽  
H. Stolz

AbstractWe investigate quantum many-body effects on Rydberg excitons in cuprous oxide induced by the surrounding electron-hole plasma. Line shifts and widths are calculated by full diagonalisation of the plasma Hamiltonian and compared to results in first order perturbation theory, and the oscillator strength of the exciton lines is analysed.


1965 ◽  
Vol 20 (12) ◽  
pp. 1676-1681 ◽  
Author(s):  
D. Sutter ◽  
H. Dreizler ◽  
H. D. Rudolph

The microwave spectra of CD3 —S —S —CD3 and CH3 —S —S—CH3 have been measured in the frequency range from 5.5 to 34 kmc/sec. From the six rotational constants an r0-structure has been calculated. STARK-effect measurements have been made for the 101 —110 and 202—211 rotational transitions of CH3—S—S—CH3. The dipole moment was calculated to be (1.985±0.01) Debye. An approximate value for the barrier to internal rotation of the two methyl tops is given, V3= (1.6±0.1) kcal. The calculation has been based on triplet splittings of the rotational lines using second order perturbation theory in the torsional wavefunctions and neglecting first order and cross terms in angular momentum.


2020 ◽  
Vol 35 (37) ◽  
pp. 2050307
Author(s):  
B. Hamil ◽  
M. Merad

In this paper, by using the Dirac derivatives the Klein–Gordon (K-G) equation is determined in a [Formula: see text]-Minkowski spacetime. The dispersion relation and the first-order approximation case are deduced. The Feshbach–Villars (FV) equation is derived by applying the new linearization process to the time. We then study the effect of magnetic interaction on energies spectrum in a [Formula: see text]-Minkowski spacetime as an application, as a result we found that the energies spectrum are not symmetrical. We also study the case of hydrogen atom in non-relativistic limit by using perturbation theory. The upper bound of the [Formula: see text]-deformation parameter is evaluate, on the basis of the experimental data for [Formula: see text] transition frequency.


Sign in / Sign up

Export Citation Format

Share Document