Adsorption of methylene blue from aqueous solution using palm kernel shell activated carbon

Author(s):  
Voon Mei Xiang ◽  
Rozidaini Mohd Ghazi
2019 ◽  
Vol 5 (3) ◽  
pp. 43 ◽  
Author(s):  
Aloysius Akaangee Pam

In this present work, a novel method for synthesis of palm kernel shell activated carbon was established using DES (choline chloride/urea)/H3PO4 as the activating agent. The pore characterization, morphology, and adsorption properties of the activated carbons were investigated. The activated carbon samples made from the same feedstock at two pyrolysis temperatures (500 and 600 °C) were compared for their ability to adsorb Pb(II) in aqueous solution. The results demonstrated that the production of the activated carbon and adsorptive properties were significantly influenced by the pyrolysis temperature and the ratio of precursor to activating agent. DES/H3PO4 activated carbon (having surface area 1413 m2/g and total pore volume 0.6181 cm3/g) demonstrated good Pb(II) removal. Although all the tested activated carbon samples adsorbed Pb(II) from aqueous solution, they demonstrated different adsorption capabilities according to their various properties. The pyrolysis temperature, however, showed little influence on the activated carbon adsorption of Pb(II) when compared to the impregnation ratio. Their good desorption performance perhaps resulted from the porous structure.


NANO ◽  
2015 ◽  
Vol 10 (02) ◽  
pp. 1550017 ◽  
Author(s):  
Abdullah Al Mamun ◽  
Yehya M. Ahmed ◽  
Ma'an Fahmi R. AlKhatib ◽  
Ahmad Tariq Jameel ◽  
Mohammed Abdul Hakeem Abdul Rahman AlSaadi

Carbon nanofibers (CNFs) were synthesized by using a safe and less hazardous method, compared to using floating catalysts in chemical vapor deposition (CVD) process. This process used C 2 H 2 as carbon source and oil palm kernel shell-based powdered activated carbon (PAC) as cheap solid substrate. Use of nickel ( Ni 2+) impregnated PAC as fixed substrate for the synthesis of CNF is one of the novelties of the research work accomplished by the authors. The PAC–CNFs porous nanocomposite product was used for the sorption of lead ions ( Pb 2+) from synthetic aqueous solution. Kinetics of Pb 2+ adsorption and isotherms were investigated by varying initial concentration of lead and contact time. PAC–CNFs were found to remove Pb 2+ better at acidic pH of about 5.5. Langmuir and Freundlich isotherms were applied to the sorption equilibrium data to find the best fitted model. Langmuir isotherm model with R2 = 0.965 fitted the adsorption data better than the Freundlich isotherm. The kinetic processes of Pb 2+ adsorption on CNFs were investigated by applying different kinetic models, namely zero-order, pseudo-first-order and pseudo-second-order. The pseudo-second-order rate equation exhibited the best results with R2 = 0.999, qe = 74.79 (mg/g) and K2 = 0.029 (min ⋅ g/mg). The novel nanocomposite product seemed to have the potential to remove Pb 2+ ions from aqueous solution.


2021 ◽  
Vol 8 (2) ◽  
pp. 1002-1019
Author(s):  
S M Anisuzzaman ◽  
Nirwana Sinring ◽  
Rachel Fran Mansa

This study aimed to produce palm kernel shell granular activated carbon (PKSGAC) from slow vacuum pyrolysed PKS biochar (PKSB) via chemical activation using a horizontal tubular split zone furnace. The study also investigated the effects of varying parameters of the PKSGAC on its colour removal ability. The PKSB was activated through chemical activation using potassium hydroxide (KOH) at various parameters such as activation temperature (700oC to 850oC), KOH concentration (50 % w/v to 100 % w/v) and particle size of PKSB (0.4 mm to 2.5 mm). The novelty of this work lies in the study of chemical activation on various particle size ranges using response surface methodology (RSM) to model the relationships between various parameters. The PKSB was characterized to determine its thermal condition, and the PKSGAC was characterized to determine the iodine number, bulk density, ash content, moisture content, surface area and morphology structure. The parameters that were used for each sample were determined by using the RSM based on central composite design (CCD). In this study, design expert version 11.0 software was used and three parameters as independent variables were manipulated. Finally, three different PKSGAC samples of different particle sizes were used to test for the methylene blue (MB) dye removal with the concentration of 5 mg/l, 10 mg/l, 15 mg/l and 20 mg/l. Thermal analysis showed that the total weight loss of the PKSB sample was 58.30% and for PKSGAC the range of the product yield as shown from the RSM was from 33.23% to 96.33%. The RSM also showed that the values for moisture content were in a range from 0% - 39%, as for the ash content value from 2% - 12%, while for the bulk density ranged from 0.17 g/cm3 - 0.50 g/cm3. The highest iodine value achieved was 1320 mg/g at activation temperature of 850oC, KOH concentration of 50% w/v and particle size of 0.4 mm. From the RSM, an iodine number of 1100 mg/g could be obtained using an activation temperature of 850oC, the KOH concentration of 69.22% w/v and the particle size of 0.59 mm. From the BET analysis, the PKSGAC sample obtained 581 m2/g for SBET and 0.3173 cm3/g for the Vtot. The highest percentage dye removal of MB dye was 89.61% to 97.63% at 775oC activation temperature, 75% w/v KOH concentration and 0.4 mm particle size. This work produced RSM models to predict the relationships between the parameters and the response, as well as the performance on MB dye removal.


Sign in / Sign up

Export Citation Format

Share Document